Research article
urn:lsid:zoobank.org:pub:05433EF3-5898-44B0-9353-889448C5122B

Taxonomy of the New World bee genus *Agapostemon* Guérin-Méneville – new names and synonymies (Hymenoptera: Halictidae)

Cory S. SHEFFIELD 1*, Lars VILHELMSEN 2 & Frederique BAKKER 3

1 Royal Saskatchewan Museum, 2340 Albert Street, Regina, Saskatchewan S4P 2V7 Canada.
2 Natural History Museum of Denmark, Science, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
3 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, Netherlands.

*Corresponding author: Cory.Sheffield@gov.sk.ca
Email: lbvilhelmsen@snm.ku.dk
Email: frederique.bakker@naturalis.nl

1 https://orcid.org/0000-0003-0603-7333
2 https://orcid.org/0000-0002-5593-5722

1 urn:lsid:zoobank.org:author:E8A20492-60B0-411E-A119-99A6A7F16C15
2 urn:lsid:zoobank.org:author:96FC3783-9FA7-421E-B292-6718A3762D45
3 urn:lsid:zoobank.org:author:F43869DC-20F9-4ED2-A37D-4A3282B1D2BD

Abstract. Many early taxonomic works on North American bees were published by Europeans using specimens collected in the New World, some with type locations so imprecise that uncertainty on the nomenclatural status remains to this day. Two examples come from Fabricius (1745–1808) who described *Andrena virescens* Fabricius, 1775 and *Apis viridula* Fabricius, 1793 from “America” and “Boreal America”, respectively. The former species of *Agapostemon* Guérin-Méneville, 1844 occurs across most of the United States and southern Canada, the latter presumed an endemic to Cuba. The type materials of these two taxa have never been compared to each other, though a morphology-based phylogenetic analysis placed both in distinct species groups. Here we synonymize *Apis viridula* under *Ag. virescens*, thereby making *Ag. femoralis* (Guérin-Méneville, 1844) available as the name for the Cuban species. A lectotype for *Ag. femoralis* (the type species for the genus *Agapostemon*) is hereby designated to stabilize this taxonomy. We also synonymize *Ag. obscuratus* Cresson, 1869 under *Ag. femoralis*, suggesting that it represents a dark color polymorphism. As *Ag. cubensis* Roberts, 1972 is a junior secondary homonym of *Ag. cubensis* (Spinola, 1851), we offer *Ag. robertsi* as a replacement name for the former.

Keywords. Bees, lectotype, North America, the Antilles.

Introduction

Much past confusion has surrounded the nomenclatural status of the North American sweat bee *Agapostemon virescens* (Fabricius, 1775) (Hymenoptera: Halictidae) largely due to the fact that, pre-1900, many taxonomists naming material from the New World were from Europe (e.g., Fabricius 1775, 1793; Lepeletier 1841; Smith 1853; Dalla Torre 1896) and vague or imprecise collection information was recorded for much of this material, including the type localities. *Andrena virescens* Fabricius, 1775 was named from material collected in “America” (Fabricius 1775); this species is widespread across most of the United States and southern Canada (Roberts 1972), but seemingly is not found in Mexico or Mesoamerica (Roberts 1972; Roberts & Brooks 1987; Ramírez-Freire et al. 2012); the few specimens identified from Mexico, Honduras (det. by W.E. LaBerge), and Cuba (St. Clara) (see Ascher & Pickering 2020) may represent misidentifications. The latter is especially interesting as it likely represents a specimen of *Ag. viridulus* (Fabricius, 1793), a species now considered to be a Cuban endemic (Moure 1960; Roberts 1972; Moure et al. 2007).

Cresson (1887) was the first North American to apply a name currently associated with *Ag. virescens* to this taxon, recognizing *Ag. nigricornis* (Fabricius, 1793) as a valid species, likely following the classification of Smith (1853); a more specific type locality of Georgia was provided for this taxon by Fabricius (1793), though Cresson (1887) also indicated that this species may be a synonym of *Ag. sericeus* (Forster, 1771). Soon after, several works on North American bees applied the name *Ag. viridulus*, and not the older *Ag. virescens*, to material collected in the United States and Canada, including Robertson (1895, 1897), Titus (1900), Crawford (1901, 1906 (in Viereck et al. 1906), 1912), Vachal (1903), Cockerell (1902, 1904, 1909, 1911), Shelford (1913, 1937), Stevens (1920), and Tucker (1909). Cockerell (1917a) later described *Ag. tyleri* Cockerell, 1917 from Mexico, but indicated that it was almost exactly like *Ag. viridulus*.

The name *Ag. viridulus* was likely applied to North American material because Robertson (1897) stated that “it is an absurd affection of authority to give this name [i.e., *Ag. viridulus*] to the Cuban species, before it is shown that Fabricius did not mean that his species came from the continent of North America, that he did not know where it came from, or that the description of *Apis viridula* does not apply to the North American species”. In his study of Cuban bees, Baker (1906) expressed sentiments similar to those of Robertson (1897) on *Ag. viridulus* as a valid species in Cuba. Fabricius (1793) did not provide a type locality for *Ag. viridulus* in his original work, but in 1804 indicated that the species (as *Megilla viridula*) was from “Habitat in America boreali” (Fabricius 1804) which Robertson (1897) considered to mean North America. Robertson (1897) also indicated that Provancher (1882) likely misidentified *Ag. viridulus* (= *Ag. virescens*) as *Augochlora radiata* (= *Ag. sericeus* (Forster, 1771)) based on the black metasoma (this misidentification was confirmed by Sheffield & Perron 2014), though in that same work he (i.e., Provancher 1882) recognized *Ag. tricolor* Lepeletier, 1841 (= *Ag. virescens*) as a distinct species. Crawford (1912) later used *Ag. viridulus* for specimens from Medicine Hat, Alberta, and the name *Ag. virescens* did not appear in his earlier revision of North American species (Crawford 1901), though again the morphology and geography fit the current concept for this species (i.e., Roberts 1972). Though *Ag. virescens* is the oldest name for this taxon, Robertson (1897) and later authors did not consider *Ag. viridulus* a synonym of *Ag. virescens* presumably because Fabricius (1804) provided more precise type location information. However, *Ag. virescens* is now widely recognized as the only member of the genus occurring in eastern North America and all of Canada in which the female has the combination of a black metasoma (Sandhouse 1936; Roberts 1972; Packer et al. 2007) and dark-tipped clypeus.

Ashmead (1900) was among the first American entomologists to consider *Ag. viridulus* a Cuban species, likely based on the earlier opinion of Dalla Torre (1896), in contrast to the earlier opinion of Robertson (1897) quoted above. Dalla Torre’s (1896) concept was subsequently followed by Friese (1902), with
both considering *Ag. femoralis* Guérin-Méneville, 1844 a synonym of *Ag. viridulus*. The lectotype for *Ag. viridulus* was designated by Moure (1960) from two female specimens at the Sehested – Tender Lund collection at the Zoologisk Museum in Copenhagen; Moure (1960) indicated that the species was apparently limited to Cuba, and provided a brief description but offered no diagnosis to separate this material from the more common and widespread North American species *Ag. virescens* despite the past controversy. Roberts (1972) accepted the treatment of Moure (1960), but indicated that due to the inadequacy of the original description, many authors believed that *Ag. viridulus* was a synonym of *Ag. virescens*. Almost 50 years later, *Ag. viridulus* is still considered an endemic to Cuba (e.g., Roberts 1972; Janjic & Packer 2003; Engel 2004; Genaro 2008). The male specimen of *Ag. femoralis* that Ashe (1896) and subsequently Krombein (1953) recorded from Eleuthera, Bahamas was presumably misidentified; however, several other species are known from the Bahamas (Roberts 1972; Janjic & Packer 2003).

Another Cuban endemic, *Ag. obscuratus* Cresson, 1869 has also contributed to the confusion. At the time of describing *Ag. obscuratus*, Cresson (1869) first thought it was likely only a variety of *Ag. femoralis* (= *Ag. viridulus*), but later indicated it was a distinct species, supporting the opinion of J.C. Gundlach (as cited in Cresson 1869); subsequently, Gundlach (1896) still considered it a distinct Cuban species. In fact, Cresson (1865) indicated that two of the 40 male specimens identified as *Ag. femoralis* that he examined had the head and thorax dull black with very faint obscure blue colouration, matching what he would later (i.e., Cresson 1869) call *Ag. obscuratus*. Oddly, Cresson (1869) compared what he indicated as a female to the male of *Ag. femoralis*; Roberts (1972) correctly pointed out that the type materials of both taxa are male. Cockerell (1917b) seemingly made the same mistake for his *Ag. obscuratus* var. *abjectus* Cockerell, 1917, and also indicated that it was close to *Ag. femoralis*, but larger with the head and thorax coloured differently (i.e., obscurely dark green head and thorax in *Ag. obscuratus* var. *abjectus*) from Cresson’s taxon that had the head and thorax black, with a more or less purple tinge. Since the last comprehensive revision (i.e., Roberts 1972), *Ag. obscuratus* has been considered a valid taxon.

Though the genus *Agapostemon* Guérin-Méneville, 1844 has received taxonomic treatment several times (e.g., Crawford 1901; Sandhouse 1936; Fischer 1950; Roberts 1972, 1973), only Roberts (1972) provided a comprehensive review of the genus throughout its entire range. Unfortunately, Roberts (1972) treated the species in a series of regional keys, and no comparisons were made that included both *Ag. virescens* and *Ag. viridulus*. However, Janjic & Packer (2003) produced a morphology-based phylogeny in which all species were included, including material from Cuba identified as *Ag. viridulus* and *Ag. obscuratus*. Although *Ag. virescens* and *Ag. viridulus* are seemingly very similar (Roberts 1972), the results of Janjic & Packer (2003) clearly separated the two species, enough that they were placed in two different species groups, the latter belonging to a species group restricted to the Antilles which also contained *Ag. obscuratus*. Unfortunately, type material for all species was not compared and/or used in that phylogenetic analysis, so they (i.e., Janjic & Packer 2003) used the taxonomic concepts of Roberts (1972; with some exceptions). Our purpose here is to clarify the taxonomy of *Ag. virescens* and *Ag. viridulus*.

Material and methods

Using the morphology-based matrix of Janjic & Packer (2003) as a guide, female specimens of *Ag. virescens* from throughout North America were examined for morphological consistency with the holotype (Fig. 1) and compared with the lectotype of *Ag. viridulus* (Fig. 2). The phylogeny of Janjic & Packer (2003) placed these two species into two morphologically unique species groups; those characters considered most useful (i.e., unique species specific character states) for distinguishing *Ag. virescens* from *Ag. viridulus* albeit chosen so not to damage Fabricius’s types (i.e., not requiring dissection or relaxation of the specimens to permit movement of body parts) were compared, in addition to more
general morphological features discussed below. The type material of *Ag. femoralis* (Fig. 3) and photos of the type material of *Ag. semiviridis* Cresson, 1865 (Fig. 4), *Ag. obscuratus* (Fig. 5), and *Ag. obscuratus* var. *abjectus* Cockerell, 1917 (synonymized under *Ag. obscuratus* by Roberts 1972) (Fig. 6) were also examined; *Ag. femoralis* and *Ag. semiviridis* were previously synonymized under *Ag. viridulus* by Dalla Torre (1896) and Baker (1906), respectively, though the latter is the only taxon currently synonymized under *Ag. viridulus* that is from Cuba that has a female type specimen.

Morphological terminology generally follows that of Michener (2007), with some specific terms from Roberts (1972); surface sculpture terminology follows Harris (1979). Face length to width (L:W) ratios were calculated using the following: $L =$ distance from lower edge of median ocellus to the basal edge of clypeus; $W =$ greatest distance between the inner edges of the compound eyes, measured at apex of angulation.

DNA barcodes (Hebert *et al.* 2003) were also compared, using Cytochrome Oxidase I (COI) sequences previously published by Sheffield *et al.* (2009, 2017), and for material identified as or sharing a Barcode Index Number (BIN, after Ratnasingham & Hebert 2013) with *Ag. viridulus* from Cuba in the Barcodes of Life Data (BOLD) system (Ratnasingham & Hebert 2007), this included a single specimen of *Ag. obscuratus*. Sequences were analyzed using the Barcode Gap Analysis tool on BOLD, using the Kimura 2 Parameter distance model with sequence alignment using MUSCLE. Using the same distance model and alignment parameters, nucleotides from sequences of a representative member of each BIN with a full DNA barcode were examined and compared.

The following acronyms are used for collections:

AMNH = American Museum of Natural History, New York, USA
ANSP = Academy of Natural Sciences, Philadelphia, USA
BMNH = Natural History Museum, London, United Kingdom
INHS = Illinois Natural History Survey, Champaign, USA
MSNT = Museo Regionale di Science Naturali, Turin, Italy
NHMD = Natural History Museum of Denmark (formerly ZMUC), Copenhagen, Denmark
RMNH = Naturalis Biodiversity Center, Leiden, Netherlands (formerly Rijksmuseum van Natuurlijke Historie)
USNM = United States National Museum, Smithsonian, Washington, USA

Results

Morphologically, the lectotype of *Ag. viridulus* (Fig. 2) clearly matches *Ag. virescens* (in the *splendens* group of Moure & Hurd 1987) and not Cuban material in the *viridulus* group seemingly confined to the Antilles (Moure & Hurd 1987; Janjic & Packer 2003). In fact, the females of *Ag. virescens*, including the type material of *Ag. viridulus* are quite different from material from Cuba, with specimens from the latter, including *Ag. obscuratus*, having a longer face (L:W = 0.78, versus 0.72 in *Ag. virescens*) (Fig. 7C, E; Roberts 1972: figs 33–34, 53–54), with prominent horizontal striations across most of the clypeus and supraclypeal area (Fig. 7C, E), while those of *Ag. virescens* and the type material of *Ag. viridulus* are coarsely and closely punctate, with striations limited to the medial area of supraclypeal area (Fig. 7A). Other morphological differences include the propodeal surface of *Ag. virescens* and the type material of *Ag. viridulus*, which is coarsely rugose, with the posterior surface of the propodeum encircled by a strong carina (Fig. 8A), while the surface is costulate to costate in Cuban material, including *Ag. obscuratus*, with the carina much less distinct, especially laterally (Fig. 8C).

Though males of *Ag. virescens* and Cuban material identified as *Ag. viridulus* were also not compared or keyed by Roberts (1972), they are distinctive. Males of *Ag. virescens* have extensive yellow maculations,
including a more pronounced triangular mark on the clypeus apically that extends basad medially (Fig. 7B), while the clypeal maculation on Cuban material (Fig. 7D), including *Ag. obscuratus* (Fig. 7F) is linear. Most of the legs in male *Ag. virescens* are extensively yellow, with dark markings restricted to the outer basal area of the fore and mid femur, an elongate basal mark basally on the inner front tibia, two elongate marks on the inner and outer basally on the mid tibia, and the hind leg with dark spot at the apex of femur, a small basal spot and an elongate spot in the outer basal half of the tibia; the legs of Cuban males, including *Ag. obscuratus* are primarily dark with yellow areas restricted to the inner surfaces, and the basal half of hind femur; *Ag. virescens* have the metasoma with a submedian yellow band on tergum 1, and extensive basal bands on terga 2–5 (Fig. 9A), while the metasoma of Cuban material is entirely dark (Fig. 9B–C). Structurally, the males of *Ag. virescens* also have a shorter face (L:W = 0.72) (Fig. 7B) than material from Cuba (L:W = 0.8) (Fig. 7D, F). In addition, the hind tibia and femur of *Ag. virescens* are relatively narrow, less than half as wide as long, while more robust in Cuban material including *Ag. obscuratus*, the femur less than twice as long as wide (Figs 3C, 5A, 6A); the hind tarsi of *Ag. virescens* are unmodified (Fig. 10A) while the hind basitarsus of Cuban material has a prominent basal ridge and an apical groove (Fig. 10B; Roberts 1972: figs 150, 158). The propodeum of *Ag. virescens* is coarsely rugose over its dorsal and lateral surfaces, with the posterior surface encircled by a strong carina (Fig. 8B), while males of Cuban material have a less distinctive carina (entirely lacking laterally), with the propodeal surfaces striate (Fig. 8D).

Based on our comparison of the type material of *Ag. viridulus* (Fig. 2) to female specimens of *Ag. virescens* from North America, including the holotype (Fig. 1), we conclude that the former is a synonym of the latter. As such, *Ag. femoralis*, with a type locality of Cuba (Fig. 3) would be the oldest name available for the Cuban species. We also rename the *viridulus* species group of Moure & Hurd (1987) the *femoralis* species group to reflect this. We conclude that, though Robertson (1897) felt that *Ag. viridulus* was the priority name for the North American taxon, the type specimen of *Ag. virescens* matches North American material, and we assume that the type locality “America” referred to North America (the type material has previously even been labelled as such, see Fig. 1), as this specimen does not match other species outside of the continent (i.e., Central or South America, or the Antilles). This also stabilizes the taxonomy of a species that has been subject to many ecological and taxonomic studies (e.g., LaBerge & Ribble 1966; Roberts 1972; Abrams & Eickwort 1980, 1981; Eickwort & Abrams 1980; Eickwort 1981).

The BIN for *Ag. virescens* is AAB2708, and currently in BOLD there are 90 sequences from across Canada and the eastern United States; within this BIN the mean distance is 0.36%, with a maximum distance of 1.48%. There are two sequences (BOLD Process IDs BEECB084-07 and BEECB087-07) available for *Ag. femoralis* from Cuba (AAJ7225; the former of these identified as *Ag. obscuratus* Cresson, 1869), differing from that of *Ag. virescens* by 12.1%, with 86 nucleotide differences, and supporting that though these species are considered morphologically similar (i.e., Roberts 1972), there is enough genetic and morphological divergence to distinguish these species. Though only a single specimen of each taxon was sequenced, barcoded material of *Ag. obscuratus*, also from Cuba, is genetically almost identical to the sequence of *Ag. femoralis*, differing in only one nucleotide at position 494 (A to C, respectively). In addition, apart from colour, the morphology of both taxa are identical, *Ag. obscuratus abjectus* (synonymized under *Ag. obscuratus* by Roberts 1972) representing an intermediate coloured form.

Lastly, *Ag. cubensis* Roberts, 1972 became a junior secondary homonym of *Ag. cubensis* (Spinola, 1851) when Engel (2004) designated a lectotype for the latter taxon and recognized it as a synonym of *Ag. viridulus* [= *Ag. femoralis*]. Roberts' taxon is known only from the male holotype (Roberts 1972), and since it was described the name has only been used in a handful of other publications (i.e., Alayo 1973, 1976; Janjic & Packer 2003). Therefore, we offer *Ag. robertsi* as a replacement name for *Ag. cubensis*.
Roberts, named for the late Radclyffe Burnand Roberts (1938–1988) for his work on *Agapostemon* and other bees.

Taxonomy

Class Insecta Linnaeus, 1758
Order Hymenoptera Linnaeus, 1758
Family Halictidae Latreille, 1804
Subfamily Halictinae Latreille, 1804
Tribe Halictini Latreille, 1804
Subtribe Caenohalictina Cameron, 1903

Genus *Agapostemon* Guérin-Méneville, 1844

Agapostemon virescens (Fabricius, 1775)
Figs 1, 7A–B, 8A–B, 9A

Andrena virescens Fabricius, 1775: 378 [♀].

Andrena nigricornis Fabricius, 1793: 313 [♂] [synonymy by Smith 1853: 86, though of *Ag. virescens* under *Ag. nigricornis*; synonymy of *Ag. virescens* by Dalla Torre 1896: 98].

Apis viridula Fabricius, 1793: 3742 [♀].
Halictus dimidiatus Lepeletier, 1841: 283 [♀] [synonymy of *Ag. virescens* by Dalla Torre 1896: 98; of *Ag. viridula* by Robertson 1897: 326].

Halictus tricolor Lepeletier, 1841: 289 [♂] [synonymy of *Ag. nigricornis* by Cresson 1887: 293; synonymy of *Ag. virescens* by Dalla Torre 1896: 98].

Agapostemon bicolor Robertson, 1893: 148 [♀, ♂] [synonymy of *Ag. viridula* by Robertson 1895: 118; of *Ag. virescens* by Moure 1960: 103].

Material examined

Holotype

COUNTRY UNKNOWN • 1 ♀; “America”; BMNH(E) 668675.
See https://data.nhm.ac.uk/object/4dece8b7-ab26-4233-86c9-de79d6a80a91.

Additional material

COUNTRY UNKNOWN • 1 ♀ (lectotype of *Apis viridula* Fabricius, 1793, designated by Moure 1960: 104); [Type locality not indicated in original work; “Habitat in America boreali” was indicated by Fabricius (1804)]; NHMD ZMUC00241490 (Fig. 2).

Notes

The location of the syntype ♂ of *Andrena nigricornis* Fabricius, 1793, from Georgia, is unknown, as per Sandhouse 1936: 77 and Moure 1960: 104. The same it true with the ♀ type of *Halictus dimidiatus* Lepeletier, 1841: “probablement de l’Amérique septentrionale” [Musée de M. Serville was indicated], and with the ♂ type of *Halictus tricolor* Lepeletier, 1841: “Amérique septentrionale” [Musée de M. Serville was indicated, Roberts (1972) indicated Instituto e Musco de Zoologia, Universita di Torino, Italy].

The lectotype ♀ of *Agapostemon bicolor* Robertson, 1893 (designated by W.E. LaBerge in Webb 1980: 115) from USA, Illinois, Carlinville, 22 Sep. 1886, C.A. Robertson leg., INHS 3306, was not examined as the synonymy was not questioned.
Remarks

Under his discussion of *Ag. virescens*, Cockerell (1921) included a brief mention of *Apis vitreus*, originally named and described from the male (with a colour illustration) by Harris (1782: pl 39 fig. 17); in the figure caption, Harris (1782) mentioned the brilliant green head and thorax, with yellow mouthparts, antennae, legs and abdomen, the latter with six black bands, which is consistent with most male *Agapostemon* in North America (e.g., Roberts 1972). Cockerell (1921) felt that this name should be considered valid, and presumably a synonym of *Ag. virescens*. As Harris’s (1782) work was focused on the insects of England, Warncke (1973) considered it (as *Apis vitreus* Harris, 1776, from England) a synonym of *Halictus tumulorum* (Linnaeus, 1758). However, Ebmer (1974) considered Harris’s taxon nomen dubium, indicating that the synonymy of Warncke (1973) was incorrect, and suggested that the large size of 11.5–12.5 mm (from Ebmer (1974), based on Harris’s (1782) mention of “five lines and a half”) and description supported that it was likely a male of *Agapostemon*, partially supporting Cockerell’s (1921) opinion. Ebmer (1974) also indicated that it was likely that at the time of collection (i.e., pre-1776), the New England states (where it was presumably collected) were regarded as belonging to the “motherland” (i.e., England), though by the time of publication of Harris’s works (i.e., 1776–1782) the United States was independent. However, as four species of *Agapostemon* with males generally matching that described by Harris (1782) are found in the New England states, we follow Ebmer’s (1974) recommendation and consider Harris’s species nomen dubium until the type material can be located.

“America” was indicated as the type locality for *Ag. virescens* by Fabricius (1775), but the type specimen has seemingly been re-labelled after the fact (i.e., post Cresson 1887) with N[orth], Amer[ica]. (Fig. 1); the specimen was previously examined by Cockerell (1921) and later by Charles D. Michener (as per Roberts 1972) who both considered it a valid representation of this taxon. Smith (1853) considered *Apis virescens* Fabricius 1793 (not 1775) a synonym of *Ag. nigricornis*, presumably not realizing that the species had been named 18 years previous (though he attributed it to the Banks Collection, as is the type material).

Agapostemon femoralis (Guérin-Méneville, 1844) stat. nov.

Andrena (*Agapostemon*) femoralis Guérin-Méneville, 1844a: 447 [♂].

Halictus cubensis Spinola, 1851: 203 [♂, not ♀] [synonymy of *Ag. viridula* by Engel 2004: 170].

Agapostemon semiviridis Cresson, 1865: 172 [♀] [synonymy of *Ag. viridulus* by Baker 1906: 274].

Agapostemon obscurata Cresson, 1869: 295 [♂, not ♀ as indicated]. syn. nov.

Agapostemon obscuratus var. *abjectus* Cockerell, 1917b: 436 [♂, not ♀ as indicated] [synonymy of *Ag. obscuratus* by Roberts 1972: 513].

Material examined

Lectotype (designated here, Fig. 3)

CUBA • ♂; Monchicourt leg.; RMNH.INS.1283531.

Additional material

CUBA • 1 ♀ (lectotype of *Agapostemon semiviridis* Cresson, 1865, designated by Cresson 1916: 109); ANSP 2788 (Fig. 4) • 1 ♂ (lectotype of *Agapostemon obscurata* Cresson, 1869, designated by Cresson 1916: 108); ANSP 2790 (Fig. 5) • 1 ♂ (holotype of *Agapostemon obscuratus* var. *abjectus* Cockerell, 1917); Cabanas [Cabañas]; 28 May [no year provided]; Palmer and Riley leg.; USNM 22938 (Fig. 6).
Fig. 3. *Agapostemon fémoralis* Guérin-Méneville, 1844, the type species for the genus *Agapostemon* Guérin-Méneville, 1844. Lectotype (designated here), ♂ (RMNH.INS.1283531). A. Dorsal view. B. Face. C. Lateral view. D. Associated labels. Photos by F. Bakker, Naturalis Biodiversity Center.
Notes
The lectotype ♂ of *Halictus cubensis* Spinola, 1851 (designated by Engel 2004: 170), from Cuba, Havana, Spinola Collection, MSNT, was not examined as the synonymy was not questioned.

Remarks
The name and description of *Andrena femoralis* is attributed to Guérin-Méneville (1844a), though the name (i.e., *Andrena femoralis* Guer.), type locality (i.e., Cuba) and first illustration appear on plate 83, figure 1 (incorrectly recorded as plate 73 by Van der Vecht 1957) for Cuvier’s (1836) work published in 1837 (Cuvier 1837). These images were later duplicated in Guérin-Méneville (1844b) as “Insectès, Pl[ate]. 73, Figure 1”. Banks (1909) commented on the dates of Guérin-Méneville’s *Iconographie du Regne Animali*,

Fig. 4. *Agapostemon semiviridis* Cresson, 1865. Lectotype, ♀ (ANSP 2788). A. Lateral view. B. Associated labels. C. Dorsal view. Photos by J.D. Weintraub/ANSP Entomology.
indicating that the volume dedicated to insects (i.e., Guérin-Méneville 1844a) is dated 1829–1838 with many references to other dates within the text, including 1844, the year most researchers have used in citing this work (e.g., Roberts 1972; Michener 2000, 2007, though Moure (1960) indicated 1845). However, as Cuvier’s original plates were published in 1837 (Cuvier 1837), Banks (1909) felt that those of the opinion

Fig. 5. Agapostemon obscuratus Cresson, 1869. Lectotype, ♂ (ANSP 2790). A. Lateral view. B. Associated labels. C. Dorsal view. Photos by J.D. Weintraub/ANSP Entomology.
“that a named figure is valid without [accompanying] text must credit such names” with the dates of the plate publication. However, Cowan (1971) more recently reviewed the issue of Guérin-Méneville’s works and concluded that the date relevant to the insects is 1844, and this decision is followed here.

Van der Vecht (1957) examined material that he assumed was part of the type material for *Ag. femoralis* at the Rijksmuseum van Natuurlijke Historie, Leiden (now Naturalis Biodiversity Center, Leiden), though he also indicated the possibility of syntypes existing at other institutions; other specimens with the same collection information exist at Naturalis Biodiversity Center. Thus, to stabilize *Ag. femoralis* as the valid name of this Cuban taxon, the specimen Van der Vecht (1957) provided details on (i.e., fig. 3) is hereby selected as the lectotype. Incidentally, *Ag. femoralis* is the type species for the genus *Agapostemon*.

![Image of Agapostemon obscuratus var. abjectus](image_url)

Fig. 6. *Agapostemon obscuratus* var. *abjectus* Cockerell, 1917. Holotype, ♂ (USNM 22938). A. Lateral view. B. Associated labels. C. Dorsal view. Photos by USNM.
Fig. 7. Face of females (left column) and males (right column). A–B. Agapostemon virescens (Fabricius, 1775). C. Ag. semiviridis Cresson, 1865, lectotype [= Ag. femoralis (Guérin-Méneville, 1844)]. D. Ag. femoralis. E–F. Ag. obscuratus Cresson, 1869; note, the apex of clypeus of female is damaged.
SHEFFIELD C.S. et al., Taxonomy of the New World bee genus *Agapostemon*

(Sandhouse 1936, 1943; Michener 1997). Dalla Torre (1896) was the first to treat *Ag. femoralis* as a synonym of *Ag. viridulus* (later followed by Friese 1902), though the assumption that the type material of *Ag. viridulus* was collected in Cuba was baseless.

The female type material of *Halictus cubensis* Spinola was not an *Agapostemon*, but rather *Augochlora regina* Smith, 1853 (Augochlorini) (Engel 2004), so Engel (2004) designated the male as a lectotype, and placed it into synonymy with *Ag. femoralis*. However, as a result of this designation, *Ag. cubensis* Roberts became a junior secondary homonym of *Ag. cubensis* (Spinola), thus requiring the replacement name provided below.

Though Roberts (1972) records the synonymy of *Ag. semiviridis* Cresson under *Ag. viridulus* as new, Baker (1906) had already treated it as a synonym. When described, Cresson (1865) indicated that it was potentially the female of *Ag. viridulus*.

Agapostemon (Agapostemon) robertsi nom. nov.

Agapostemon cubensis Roberts, 1972: 478 [♂] [preoccupied, not *Ag. cubensis* (Spinola) = *Ag. femoralis* (Guérin-Méneville, 1844)].

Fig. 8. Propodeum. **A–B. Agapostemon virescens** (Fabricius, 1775), ♀ (A) and ♂ (B), showing distinctive carina encircling posterior surface. **C. Ag. obscuratus** Cresson, 1869, ♀ [≡ *Ag. femoralis* (Guérin-Méneville, 1844)]. **D. Ag. femoralis**, ♂, with weak carina that does not encircle posterior surface.
Fig. 9. Dorsal view of the metosoma of male. A. *Agapostemon virescens* (Fabricius, 1775). B. *Ag. femoralis* (Guérin-Méneville, 1844). C. *Ag. obscuratus* Cresson, 1869 [= *Ag. femoralis*].

Fig. 10. Hind basitarsus of male. A. *Agapostemon virescens* (Fabricius, 1775), which is unmodified. B. *Ag. femoralis* (Guérin-Méneville, 1844), with upper arrow showing the prominent apical groove, and the lower arrow showing the prominent basal ridge.
Notes
The holotype ♂ of Ag. robertsi, from Cuba, “5.K. S. of Pinar Rio” [Pinar del Río], “12-23 September ’13”, AMNH, did not need to be examined.

Discussion
Though previous workers assumed that the type material of Ag. viridulus was from, and presumably endemic to Cuba (e.g., Dalla Torre 1896; Ashmead 1900; Cockerell 1910; Moure 1960; Roberts 1972), there is no evidence that this is true. In fact, in Fabricius’s collected works there is only one bee species that was described with a type locality from Cuba, Coelioxys tridentata (Fabricius, 1775) [described as Apis tridentata] (Genaro 2006). As indicated by Genaro (2006), most early works on bees in the area are generally identified as coming from “Americae Meridionalis Insulis” (includes Cuba and/or another Caribbean island). Thus, it is hard to believe that Fabricius would have provided a specific locality for a species from Cuba in an earlier work (Fabricius 1775), though not for a species described in 1793 for which no locality was recorded until done so in 1804 (Fabricius 1804). However, it is also likely that detailed information was lacking for many of the specimens that Fabricius received from the Western Hemisphere.

Within the BIN to which Ag. virescens belongs, there is little genetic variation, though members differ by over 12% from Ag. femoralis, suggesting that although these species were considered morphologically very similar by Roberts (1972), there is enough genetic and morphological divergence to distinguish the species. The COI sequence of Ag. obscuratus, also from Cuba, is genetically identical to material now recognized as Ag. femoralis. The phylogeny of Janjic & Packer (2003) recovered Ag. femoralis [as Ag. viridulus] and Ag. obscuratus as separate taxa, albeit within the same species group, suggesting that a new phylogenetic analysis is warranted, though this was likely due in large part to colour differences between the material examined. Based on genetic similarity, shared geography, and past opinions of Cresson (1869) and Roberts (1972), we consider the taxon Ag. obscuratus to represent a colour polymorphic form of Ag. femoralis, and place it into synonymy. As Roberts (1972) synonymized Cockerell’s (1917b) obscurely dark green (i.e., intermediate in colour; Fig. 6) taxon under Cresson’s (1869), we assume he was also of the opinion that colour polymorphisms existed in Agapostemon. Though Roberts (1972) also considered the specific rank of Ag. obscuratus questionable, he did not synonymize it under Ag. viridulus despite noting only differences in colour between the two taxa. Such variation within a metallic bee species, ranging from metallic green or blue to black is uncommon, but not unheard of in bees. For instance, Osmia (Melanosmia) tersula Cockerell, 1912 (Megachilidae) is typically metallic blue in most of its range (Sandhouse 1939; Mitchell 1962), though black specimens lacking metallic colouration do occur (Rightmyer et al. 2010). Many metallic halictid bees show extensive congeneric (e.g., Gibbs 2010, 2011; Engel 2013, 2014a, 2014b) and conspecific (e.g., Ordway 1966) variation in body colouration; Ordway (1966) and Gibbs (2009) indicated that killing agents and other chemicals can alter metallic colouration to some extent. Combining molecular methods such as DNA barcoding to studies of bee taxonomy has proven very useful for recognizing colour variable species (e.g., Sheffield et al. 2011; Sheffield et al. 2020).

Acknowledgements
Thanks to Laurence Packer (York University, Toronto) for helpful discussion and comments on earlier drafts of this manuscript, and for loans of specimens; to Doug Yanega (University of California, Riverside) for advice and discussion of the ICZN code. Thanks to the institutions that have online resources available for type material examination, which was especially useful during the difficult times of COVID-19 – these include the BMNH and the USNM. Thanks to Jason Weintraub and Jon Gelhaus (Department of Entomology, Academy of Natural Sciences, Philadelphia) for providing photographs of
type materials from (ANSP). The Biodiversity Heritage Library (https://www.biodiversitylibrary.org/) has continuously proven invaluable as a resource for the study of older, highly relevant taxonomic literature, and was used extensively while completing this work.

References

https://doi.org/10.5962/bhl.title.10490

https://doi.org/10.5962/bhl.title.49760

https://www.jstor.org/stable/25083542

https://doi.org/10.5962/bhl.title.9005

https://doi.org/10.5962/bhl.title.4052

https://www.jstor.org/stable/25083542

https://doi.org/10.5962/bhl.title.9005

https://doi.org/10.5962/bhl.title.4052

Manuscript received: 1 December 2020
Manuscript accepted: 3 March 2021
Published on: 25 May 2021
Topic editor: Gavin Broad
Topic editor: Nesrine Akkari
Desk editor: Pepe Fernández

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the EJT consortium: Muséum national d’histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Real Jardín Botánico de Madrid CSIC, Spain; Zoological Research Museum Alexander Koenig, Bonn, Germany; National Museum, Prague, Czech Republic.