Research article

urn:lsid:zoobank.org:pub:2ABDE036-2D3B-4DD8-BB49-DBCC2FEA1678

A new Diplura species from Georgia caves,
Plusiocampa (Plusiocampa) imereti (Diplura, Campodeidae),
with morphological and molecular data

Alberto SENDRA1,* , Ferran PALERO2, Alba SÁNCHEZ-GARCÍA3, Alberto JIMÉNEZ-VALVERDE4, Jesús SELFA5, Eter MAGHRADZE6 & Shalva BARJADZE7

1Colecciones Entomológicas Torres-Sala, Servei de Patrimoni Històric, Ajuntament de València, Passeig de la Petxina, 15, 46008 València, Spain.

1Departament de Didàctica de les Ciències Experimentalis i Socials, Facultat de Magisteri, Universitat de València, Avda. Tarongers 4, 46022 València, Spain.

2Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de Valencia, C/ Catedrático José Beltrán 2, 46980 Paterna, Spain.

2Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.

3Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València, C/ Dr. Moliner 50, 46100 Burjassot, València, Spain.

3Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192, USA.

4Universidad de Alcalá, Research Team on Soil Biology and Subterranean Ecosystems, Department of Life Sciences, Faculty of Science, Campus Universitario Crta. A-2 Km. 33.6, E-28805, Alcalá de Henares, Madrid, Spain.

5Laboratori d’Investigació d’Entomologia, Departament de Zoologia, Universitat de València, C/ Dr. Moliner 50, 46100 Burjassot, València, Spain.

6, 7Institute of Zoology, Ilia State University, Giorgi Tsereteli 3, 0162, Tbilisi, Georgia.

*Corresponding author: alberto.sendra@uv.es

2Email: Ferran.Palero@uv.es

3Email: alba.sanchez@uv.es

4Email: alberto.jimenezv@uah.es

5Email: jesus.selfa@uv.es

6Email: eter.magradze.1@iliauni.edu.ge

7Email: shalva.barjadze@yahoo.com

1urn:lsid:zoobank.org:author:11636BAE-AE66-4898-A7C8-35B329E7E3A8

2urn:lsid:zoobank.org:author:6FDDEFE46-501A-4D6E-975E-72F55617775C

3urn:lsid:zoobank.org:author:86DFDA66-BEC1-428A-A7BO-E90F00FADCE3

4urn:lsid:zoobank.org:author:E31ADC69-98EE-46CB-87E2-5B27B53FF107

5urn:lsid:zoobank.org:author:C01B4FA6-6C5C-4DDF-A114-2B06D8FE4D20

6urn:lsid:zoobank.org:author:A5CE76D6-214B-40D8-B06D-181C0AB4D7C9

7urn:lsid:zoobank.org:author:63ABE1B2-8A56-42C8-BC34-1119D3A2ECBC
Abstract. A new dipluran species, Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov., from the deep zone in three caves in the Imereti region, Georgia, is described. This new troglobitic Plusiocampa is an addition to four others known Diplura from around the Black Sea region, two Dydimocampa and two Plusiocampa s. str. The present study also provides the first CO1 sequences for the Plusiocampinae taxa and the first molecular data for cave-dwelling Plusiocampa species. Although bootstrap values were low, the maximum-likelihood phylogenetic tree grouped Plusiocampa (P.) imereti Sendra & Barjadze sp. nov. with two Plusiocampa s. str. species from Eastern Europe. Morphologically, P. (P.) imereti Sendra & Barjadze sp. nov. is closely related to two cave-dwelling species: Plusiocampa (Plusiocampa) glabra Condé, 1984 and Plusiocampa (P.) chiosensis Sendra & Gasparo, 2020. The new species can be distinguished by the presence of lateral anterior macrosetae on metanotum, more uneven claws, and the presence of 2+2 lateral anterior macrosetae on middle urotergites. The five species currently known for the Black Sea region inhabit caves located at low altitude but with no influence from former glacial or permafrost processes.

Keywords. Plusiocampinae taxonomy, phylogeny, cave-dwelling, biogeography.

Introduction

Plusiocampa Silvestri, 1912 is a relatively well-known genus of the subfamily Plusiocampinae, part of the most diverse family of Diplura (i.e., Campodeidae Lubbock, 1873; Sendra et al. 2021a). Seventy-five Plusiocampa species have been described so far, mostly cave-dwellers distributed throughout the Mediterranean and Black Sea regions but some inhabiting soil ecosystems (Sendra et al. 2021a, 2021b) (Fig. 1). Four species of Plusiocampa are already known from caves around the Black Sea, at the western side in the well-known Movile Cave in Dobroudja (Condé 1993, 1996); caves from the Crimean Peninsula in the north (Silvestri 1949; Sendra et al. 2020a), and a cave near the Abkhazia coast in the east (Sendra et al. 2020a). Recently collected specimens of Plusiocampa, found in three caves in the Imereti Plateau (Georgia), have allowed us to describe one more species using morphological and, for the first time, molecular data.

Campodeoidea DNA sequences are poorly represented in current databases (only 14.6% of the dipluran sequences; NCBI accession date 29/04/2021), and data are highly skewed towards a handful of taxa. Only 15 Campodeoidea identified to species level are represented in Genbank, and only 5 of those include a DNA barcode (Remycampa herbanica Sendra & Oromí, 2020, Campodea fragilis Meinert, 1865, C. lubbocki Silvestri, 1912, C. tillyardi Silvestri, 1931 and Lepidocampa weberi Oudemans, 1890). Previous studies have focused on sequence variation in nuclear ribosomal genes (18S rDNA and 28S rDNA), but these genes provide little resolution for evolutionary relationships within Campodeidae (Luan et al. 2005; Sendra et al. 2020b). The present study contributes the first CO1 sequences for Plusiocampinae taxa and the first molecular data for cave-dwelling species of Plusiocampa.

Material and methods

Diplurans were sampled by hand using an aspirator in the dark zones of the Datvis (Bear), Melouri, and Shvilobisa caves in 2018 and 2019. Specimens were transferred to vials containing 70% ethanol.
Morphological study
In the laboratory, specimens were washed with distilled water, mounted on a slide with Marc André II solution, and examined under a phase-contrast optical microscope (Leica DMLS). Illustrations were made with a drawing tube and measurements were taken with an ocular micrometre. To determine body length, specimens were mounted in toto and measured from the base of the distal macrochaetae on the frontal process to the supra-anal abdominal valve. Four specimens were coated with palladium-gold for SEM photography (Hitachi S-4900) and sensilla measurements. The morphological descriptions and abbreviations follow Condé (1956). The term ‘gouge sensilla’ is used for the concavo-convex shaped sensilla on the antennae, following Bareth & Condé (1981).

Abbreviations for morphological measurements
For the position of macrosetae, we adopted the abbreviations of Condé (1955).

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>la</td>
<td>lateral-anterior</td>
</tr>
<tr>
<td>lp</td>
<td>lateral-posterior</td>
</tr>
<tr>
<td>ma</td>
<td>medial-anterior</td>
</tr>
<tr>
<td>mp</td>
<td>medial posterior</td>
</tr>
<tr>
<td>post</td>
<td>posterior</td>
</tr>
<tr>
<td>s</td>
<td>submacrosetae</td>
</tr>
<tr>
<td>sla</td>
<td>lateral-anterior submacrosetae</td>
</tr>
</tbody>
</table>

Institutional abbreviations

Coll AS = private collection of Alberto Sendra, València, Spain
IZISU = Institute of Zoology at Ilia State University, Georgia
MZB (MCNB) = Museu de Ciències Naturals de Barcelona, Spain

Molecular analysis

Total genomic DNA was isolated from ethanol-preserved tissues using commercial extraction kits (NucleoSpin kit, Macherey-Nagel™). Therefore, we decided to amplify the most variable CO1 gene fragment with the universal primers LCO1490 and HCO2198 (Folmer 1994), commonly used for DNA barcoding. The thermal profile of the polymerase chain reaction (PCR) used was 94°C for 15 min for polymerase activation (HotStart), followed by 38 cycles of 94°C for 30 s, 50°C for 30 s, 72°C for 30 s, and a final extension at 72°C for 20 min. Amplified PCR products were cleaned with Exo-SAP enzyme prior to direct product sequencing in an ABI Prism 3770 (Macrogen, Spain).

Chromatograms were checked using BioEdit ver. 7.2.5 (Hall 1999), and all sequences were translated into amino acids to detect possible insertions and/or stop codons to rule out the presence of pseudogenes, and a sequence alignment was performed using the MAFFT program with default parameters. To improve reliability, conserved (ungapped) blocks of sequence were extracted from each alignment using the Gblocks server under default settings (Castresana 2000). The CO1 gene has been suggested as an informative molecular marker at several taxonomic scales, particularly at the species level. Therefore, K2P genetic distances were obtained for the CO1 dataset using MEGA ver. 7 (Kumar et al. 2016) to compare with estimates in other taxa. The best-fitting substitution model was tested using MrAIC ver. 1.4.6 (Nylander 2004) and selected with a correction for small sample sizes according to the Akaike information criterion (AICc). The maximum-likelihood (ML) phylogenetic tree construction method was applied as implemented in Phyml ver. 3.0 (Guindon et al. 2010).

Results

Class Diplura Börner, 1904
Superfamily Campodeoidea Lubbock, 1873
Family Campodeidae Lubbock, 1873
Subfamily Plusiocampinae Plact, 1957
Genus *Plusiocampa* Silvestri, 1912

Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov.
urn:lsid:zoobank.org:act:40C3DB96-19CD-4354-ACA9-434F0ADA34BB
Figs 2–12

Diagnosis

Troglomorphic species. Antennae with 39–45 antennomeres; 12 complex olfactory chemoreceptors within cupuliform organ; non-protruding frontal process slightly protruding, plain, with non-tubercular setae or just slightly tubercular. Pronotum 1+1 *ma*, 2+2 *la*$_{1,3}$, 2+2 *lp*$_{1,3}$; mesonotum with 1+1 *ma*, 3+3 *la*$_{1,3}$, 2+2 *lp*$_{1,3}$, 1+1 *mp*; metanotum with 1+1 *ma*, 2+2 *la*$_{1,3}$ or *sla*$_{1,3}$, 1+1 *lp*, 1+1 *mp*; thin; all notal macrosetae long and covered by thin barbs on half to distal portions; thin, middle-sized clothing setae covered by 0–4 thin distal barbs. Legs elongated, pretarsus of metathoracic legs slightly overpasses end of abdomen. Femora I–III with one long, barred dorsal macroseta and one shorter, barred ventral macroseta. Tibiae I–III with two short barred ventral macrosetae. Claws unequal (posterior claw 1.3× as long as anterior one); large, backward overhang on posterior claw; lateral crests well-developed. Pretarsal process long and setiform. Urotergites 1+1 *post*$_{1}$ on I–II; 0+0, 0+1 or 1+1 *la*, 1+1 or 2+2 *post*$_{1,2}$ on III; 1+1 *la*, 2+2 to 4+4 *post*$_{1,4}$ on IV; 2+2 *la*$_{2,3}$, 4+4 *post*$_{1,4}$ on V–VII; 6+6 *post*$_{1,6}$ on VIII and 8+8
or 8+7 post, on abdominal IX. Urosternite I with 8+8–7+7 macrosetae (Figs 8–9); urosternites II–VII with 6+6 macrosetae; urosternite VIII with 2+2 macrosetae. Male urosternite I (Fig. 8) with slightly enlarged subcylindrical appendages, each bearing up to 21 glandular \(a_1 \) setae. Female appendages slightly thinner, with up to 11 glandular \(a_1 \) setae.

Etymology

The specific epithet refers to the Imereti region, the location of the Shvilobisa Cave, treated as a noun in apposition.

Type material

Holotype

Paratypes

GEORGIA • 1 ♂, “paratype-♂1 IZISU-TD-T-00002”; same collection data as for holotype; IZISU-TD-T-00002 • 1 ♀, “paratype-♀1 MZB (MCNB) 2021-2336”; same locality as for holotype; 20 Jul. 2020; Eter Maghradze leg.; MZB (MCNB) 2021-2336 • 1 ♀, “paratype-♀2 MZB (MCNB) 2021-2337”; same collection data as for preceding; MZB (MCNB) 2021-2337 • 1 ♂, “paratype-♂2 Coll AS”; same collection data as for preceding; Coll AS.

Other material

GEORGIA • 2 specs, unknown sex [for SEM photography and one specimen for DNA analysis]; Shvilobisa Cave; 24 Feb. 2018; Shalva Barjadze and Eter Maghradze leg. • 2 specs [for SEM photography and one for DNA analysis]; same collection data as for preceding; 20 Jul. 2020; Eter Maghradze leg.

Other material from two other caves (all Coll AS)

GEORGIA • 1 ♀; Kumistavi village Tskaltubo Municipality, Imereti Region, Sataplia-Tskaltubo karst massif, Datvis (Bear) Cave; 42°22′28″ N, 42°35′45″ E; 5 Jul. 2018; Eter Maghradze leg. • 1 ♀; same collection data as for preceding; 1 Sept. 2019 • 1 ♂; near Melouri village, Tskaltubo Municipality, Imereti Region, Sataplia-Tskaltubo karst massif, Melouri Cave; 42°23′15.1″ N, 42°37′41.5″ E; 1 Nov. 2018; Eter Maghradze leg.

Description

Body. Body length 4.3–7.2 mm (females) and 4.9–5.2 mm (males) (Table 1). Epicuticle smooth under optical microscope and SEM; body with thin, middle-sized clothing setae covered by 0–4 thin distal barbs.

Head. Three intact antennae, all slightly longer than body length, with 39–45 antennomeres (Table 1). Small, thin, subcylindrical sensillum on third antennomere located in ventral position between c and d macrosetae. Central antennomeres 2.1 × as long as wide, apical antennomere 3.0 × as long as wide. Cupuliform organ occupying \(\frac{1}{5} \) of total length of apical antennomere, with about 12 complex olfactory chemoreceptors. Each olfactory chemoreceptor is composed of a complete fold surrounding a central cylinder with two lateral expansions, entirely reticulated and perforated (Fig. 5). Gouge sensilla 30–40 \(\mu m \) long, in a single distal whorl of 13–16 sensilla on each medial and distal antennomere. Frontal process slightly protruding, plain, with non-tubercular setae or just slightly tubercular on distal portion (Fig. 3); macrosetae along the insertion line of antennomere and \(i \) macrosetae and \(x \) setae longer than other macrosetae (\(a/i/p/x \) with relative lengths of 25/36/19/37 in holotype). Suboval labial palps with
Fig. 2–6. Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov., ♀, holotype (IZISU-TD-T-00001). 2. Thoracic nota. 3. Frontal process. 4. Detail of mesonotum. 5. Detail of mesonotum at high magnification. 6. Detail of metanotum.
Table 1. Measurements for *Plusiocampa* (*Plusiocampa*) *imereti* Sendra & Barjadze sp. nov. Body length, antennae and metathoracic leg articles (in mm), and number of antennomeres.

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Body length</th>
<th>Antennas</th>
<th>Antennomeres</th>
<th>Coxa</th>
<th>Trochanter</th>
<th>Femur</th>
<th>Tibia</th>
<th>Tarsus & pretarsus</th>
</tr>
</thead>
<tbody>
<tr>
<td>holotype ♀</td>
<td>7.2</td>
<td></td>
<td></td>
<td>0.4</td>
<td>0.4</td>
<td>1.1</td>
<td>1.3</td>
<td>0.9</td>
</tr>
<tr>
<td>IZISU-TD-T-00001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paratype-♀1 MZB</td>
<td>6.0</td>
<td>6.5</td>
<td>44</td>
<td>0.3</td>
<td>0.3</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>(MCNB) 2021-2336</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paratype-♂1 IZISU-TD-T-00002</td>
<td>5.2</td>
<td>6.5</td>
<td>39</td>
<td>0.2</td>
<td>0.2</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>paratype-♂2 Coll AS</td>
<td>4.9</td>
<td>6.0</td>
<td>45</td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>paratype-♀2 MZB</td>
<td>4.3</td>
<td></td>
<td></td>
<td>0.2</td>
<td>0.2</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>(MNCB) 2021-2337</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Measurements for *Plusiocampa* (*Plusiocampa*) *imereti* Sendra & Barjadze sp. nov. Body length, cerci, and cercal articles (in mm). * = probably regenerated.

<table>
<thead>
<tr>
<th>Specimens</th>
<th>Body length</th>
<th>Cerci Base (number of secondary articles)</th>
<th>Primary articles</th>
<th>Total length</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1⁰</td>
<td>2⁰</td>
<td>3⁰</td>
</tr>
<tr>
<td>paratype-♀1 MZB</td>
<td>6.0</td>
<td>1.4 (3)</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>(MCNB) 2021-2336</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>paratype-♂2 Coll AS</td>
<td>4.9</td>
<td>2.1 (4)</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>paratype-♀2 MZB</td>
<td>4.3</td>
<td>2.0 (7)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>(MNCB) 2021-2337</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a bacilliform latero-external sensillum, two guard setae, up to 7 setae on anterior border, and up to 130 neuroglandular setae in holotype.

THORAX. Thoracic macrosetal distribution (Figs 2, 4, 6): pronotum with 1+1 *ma*, 2+2 *la*₁,₂, 2+2 *lp*₁,₂; mesonotum with 1+1 *ma*, 3+3 *la*₁,₂, 2+2 *lp*₁,₂, 1+1 *mp*; metasternum with 1+1 *ma*, 2+2 *la*₁,₂ or *sla*₁,₂, 1+1 *lp*₂, 1+1 *mp*. All notal macrosetae are long and covered by thin barbs on half to distal portions (Figs 4, 6); submacrosetae *sla* are thinner and shorter than notal macrosetae; marginal setae are similar to clothing setae, and covered by 1–8 thin distal barbs. Legs elongated, pretarsus of metathoracic legs slightly overpasses end of abdomen (Table 1). Femora I–III with one long, barbed dorsal macroseta and one shorter, barbed ventral macroseta. Tibiae I–III with two short barbed ventral macrosetae. Calcars with 4–5 long barbs. Tarsi with two rows of thicker ventral setae with 2–3 very thin barbs on middle portion. Two dorsal and one ventral, smooth, subapical tarsal setae. Claws are unequal (posterior claw 1.3 × as long as anterior one); large, backward overhang on posterior claw; lateral crests well-developed. Pretarsal process long and setiform, overpassing end of claws.

ABDOMEN. Distribution of abdominal macrosetae on tergites (Fig. 7): 1+1 *postₙ* on I–II; 0+0, 0+1 or 1+1 *la*, 1+1 or 2+2 *postₙ* on III; 1+1 *la*₁, 2+2 to 4+4 *postₙ* on IV; 2+2 *la*₁,₂, 4+4 *postₙ* on V–VII;
6+6 post_i,6 on VIII and 8+8 or 8+7 post_i,4 on abdominal segment IX. All post urotergal macrosetae long and covered by thin bars along distal four-fifths (Fig. 10); la urotergal macrosetae shorter than post macrosetae, covered by bars along distal half. Urosternite I with 8+8–7+7 macrosetae (Figs 8–9); urosternites II–VII with 6+6 macrosetae; urosternite VIII with 2+2 macrosetae (Fig. 12); all urosternal macrosetae robust and large, covered by long bars along distal third to four-fifths. Apical, subapical and ventromedial setae with a few (two to four) thin, short and long barbs (Fig. 11).

Secondary Sex Characters. Male urosternite I (Fig. 8) with slightly enlarged subcylindrical appendages, each bearing up to 21 glandular \(a_1 \) setae. Female appendages slightly thinner, with up to 11 glandular \(a_1 \) setae. Spermatozoid fascicles 40 \(\mu \)m in diameter without apparently spiral filament.

Molecular analysis

The nucleotide substitution model selected was GTR+G+I (BIC = 6998.6), with the proportion of invariant sites (I = 0.46) and estimated alpha parameter for the gamma distribution (\(\alpha = 1.39 \)), indicating a significant heterogeneity in the DNA substitution among sites. The Campodeidae sequences formed a well-supported clade, clearly distinct from that of Japygidae (Fig. 13). Although bootstrap values were low, the ML phylogenetic tree grouped Plusiocampa (\(P. \)) imereti Sendra & Barjadze sp. nov. with Eastern Europe taxa such as Plusiocampa (Plusiocampa) aff. elongata Ionescu, 1955 and Plusiocampa (Plusiocampa) humicolia Ionescu, 1955, whereas Iberian Peninsula taxa (Plusiocampa (Plusiocampa) gadorensis Sendra, 2001, Plusiocampa (Plusiocampa) baetica Sendra, 2004 and Cestocampa iberica Sendra & Condé, 2012) clustered in a distinct clade. K2P genetic distances also showed \(P. (P. \) aff. elongata (0.206±0.027) and \(P. (P. \) humicolia (0.205±0.028) to be the closest species to the new Plusiocampa (\(P. \) imereti Sendra & Barjadze sp. nov. from Georgia.

Habitat

Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov. inhabits the deep zone (over 50 m from the entrance) of three caves. The Shvilobisa Cave, the type locality, is a 1000 m long, tunnel-like, easily accessible sub-horizontal cave with a small subterranean water stream (Tatashidze et al. 2009b). The others two nearby caves are about 55 km away from the Shvilobisa Cave; the Melouri Cave is 5300 meters long and has the status of natural monument (Tatashidze et al. 2009b), whereas the Datvis Cave is a poorly known cavern (K. Tsikarishvili, pers. comm.). The distance between the Datvis and Melouri caves is ca 3.5 km. The Melouri Cave – easily accessible – has dried halls and a permanent subterranean water stream near its end. This cave has gigantic stalagmites and fallen stones. The Datvis Cave is a horizontal, dry, and easily accessible cave with several halls, which are rich in different speleothems like the Shvilobisa Cave (Tatashidze et al. 2009b).

Invertebrate cavernicolous species of the studied caves

The three caves (Shvilobisa, Datvis, and Melouri) which Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov. inhabits are also the dwellings of other troglobitic arthropod species. Datvis and Melouri caves share three troglobitic species: the Diplopoda Leucogeorgia prometheus Antić & Reip, 2020, the Isopoda Colchidoniscus kutaissianus Borutzky, 1974, and the Pseudoscorpionida Chthonius satapliaensis Schawaller & Dashamirov, 1988. In addition, the Insecta (Carabidae Coleoptera) Troglocimmerites imereti Dolzhanski & Ljovuschkin, 1985 dwell in the Datvis cave; and the Melouri Cave has five more species: the Opiliones Nemaspela melouri Martens, Maghradze & Barjadze, 2021, the Araneae Centromerus bulgarianus Drensky, 1931, the Hexapoda Collembola Pseudacherontides zenkevitchi Djanashvili, 1971; the Insecta (Carabidae Coleoptera) Inotrechus kurnakovi Dolzhanski & Ljovuschkin, 1989; and Troglocimmerites sp. 1. In the Shvilobisa Cave, eight troglobitic species dwell: the Diplopoda Leucogeorgia gioi Antić & Reip, 2020, the Isopoda Caucasonethes cf. borutzkyi Verhoeff, 1932 and Colchidoniscus sp., the Pseudoscorpionida Chthonius satapliaensis Schawaller &
Fig. 13. Maximum likelihood (ML) tree of Diplura obtained from CO1 data. Only bootstrap support values above 70 are shown.
Dashdamirov, 1988, the Opiliones Nemaspela sp., the Hexapoda Collembola Oncopodura sp. and Pseudosinella sp., and the Insecta (Carabidae Coleoptera) Troglocimmerites sp. 2. (Barjadze et al. 2019; Maghradze et al. 2019; Antić & Reip 2020; Martens et al. 2021; Maghradze & Barjadze, unpublished data).

Discussion
Phyletic affinities
The notal macrosetae pattern of Plusiocampa (Plusiocampa) imereti Sendra & Barjadze sp. nov., with medial posterior macrosetae, in addition to 1+1 lateral posterior macrosetae on the metanotum, shows similarities with three species of Plusiocampa s. str. These are the cave-dwelling species Plusiocampa (Plusiocampa) glabra Condé, 1984 from a cave in Corinthos in the southern Balkan Peninsula; Plusiocampa (Plusiocampa) chiosensis Sendra & Gasparo, 2020 from Chios Island, west of the Anatolian Peninsula; and Plusiocampa (Plusiocampa) hoelzeli (Neuherz, 1984) from caves in the alpine karst between Austria and Slovenia. The extremely unequal claws (1.5) and absence of medial and lateral anterior macrosetae on the metanotum distinguish P. (P.) hoelzeli from P. (P.) imereti Sendra & Barjadze sp. nov. (Neuherz 1984; Sendra et al. 2020a), which has claws that are less unequal (1.3) and medial and lateral anterior macrosetae on the metanotum. Several taxonomical differences also separate P. (P.) chiosensis and P. glabra from P. (P.) imereti Sendra & Barjadze sp. nov. Plusiocampa (P.chiosensis and P. glabra have no lateral anterior macrosetae on the metanotom, subequal or slightly unequal claws (1–1.1), and 1+1 lateral anterior macrosetae on middle urotergites, whereas P. (P.) imereti Sendra & Barjadze sp. nov. has lateral anterior macrosetae on the metanotum, more unequal claws, and 2+2 lateral anterior macrosetae on middle urotergites.

These phyletic relationships based on morphological evidence have been supported for the first time in Campodeidae by molecular evidence. Thus, the molecular results confirm Plusiocampinae to be a monophyletic group, as previously proposed in Condé (1956), Paclt (1957), and Sendra et al. (2020a). Furthermore, the CO1 tree suggests that Plusiocampa s. str., with medial posterior macrosetae on the mesonotum and metanotum, is probably monophyletic, including P. (P.) humicola, P. (P.) aff. elongata Ionescu, 1955 and P. (P.) imereti Sendra & Barjadze sp. nov. These phyletic affinities confirm those pointed out in several contributions (Condé 1956; Sendra et al. 2019, 2020a) based on morphological features and suggest that further analyses using both nuclear and mitochondrial genes should be completed in order to clarify the evolutionary relationships within Plusiocampinae.

Biogeographical notes
Plusiocampa is the most diverse genus of Plusiocampinae, with 74 species including the new one, spread around the Euro-Mediterranean Basin and the Black Sea. Furthermore, Plusiocampa and Plusiocampinae are also totally absent north of 50º N latitude, which roughly marks the southern limit of the ice during the Last Glacial Maximum from Belgium to Crimea (Sendra et al. 2020a; Sendra et al. 2021b). Most species of Plusiocampinae inhabit cave ecosystems, with only nine dwelling in moist, soil habitats.

Around the Black Sea region, five Plusiocampa species are known from caves in karst areas. Two of the species belong to the controversial and probably paraphyletic subgenus Dydimocampa Paclt, 1957. The first one is Plusiocampa (Dydimocampa) evallonychia Silvestri, 1949, which was found in four caves from three karst massifs of the Crimean Peninsula (Mamut-Tshokrak Cave in Baidarsko-Balaklavska massif, Kuban Cave and Nasonova [= Anlysha] Cave in Ai-Petri massif, and Kizil Koba [= Krasnaya = I-El Koba] Cave Dolgorukovskiy). The second species is Plusiocampa (Dydimocampa) euxina Condé, 1996 which was found in the Pestera de la Movile cave, a hypogenic cave near Dobroudja on the western Black Sea coast (Condé 1996; Silvestri 1949; Sendra et al. 2020a). These Dydimocampa species co-
occur with two other species of *Plusiocampa* s. str.: *Plusiocampa* (*Plusiocampa*) isterina Condé, 1993 in Movile Cave (Rumania) and *Plusiocampa* (*Plusiocampa*) dublanskii Sendra & Turbanov, 2020 in the Kizil-Koba (= Krasnaya) Cave. A probably new taxon, apparently related to *P. (P.) dublanskii*, *P. (P.) aff. dublanskii*, has been found in the Abrskila Cave, Abkhazia, near the eastern Black Sea coast (Condé 1993; Sendra *et al.* 2020a). Finally, *P. (P.) imereti* Sendra & Barjadze sp. nov. is described from three caves located in the Imereti region in two neighboring areas (Zemo Imereti Plateau: Shvilobisa Cave; Sataplia-Tskaltubo karst massif: Datvis (Bear) Cave and Melouri Cave) (Figs 14–18).

All the localities of species of *Plusiocampa* in the Black Sea region are found in karst caves located at low altitudes, not far away from the coastline (Fig. 1). None of them exceed the ice-covered areas (glacier or permafrost) during the Last Glacial Maximum (Fig. 1). Furthermore, no troglobitic campodeids are

known for the Black Sea in high altitude caves, such as the Arabika Massif in West Caucasus where several biospeleological campaigns have been launched into the deepest caves of the world (Turvanov et al. 2018; Sendra & Reboleria 2012). The southern area of the Black Sea lacks records of any cave-adapted species of *Plusiocampa* or troglobitic diplurans in spite of occasional biospeleological visits, which also occurs in the caves of other regions such as the Pontic Mountains (Sendra et al. 2006, 2010).

Acknowledgments

The authors thank the SEM facility of the Universitat de València led by a great team of professionals, as well as Lucia Maltez for the English revision of the text. FP acknowledges the projects “CIDEGENT/2019/028 – BIODiversity PATterns of Crustacea from Karstic Systems (BIOPACKS): molecular, morphological, and functional adaptations” funded by the Conselleria d’Innovació, Universitats, Ciència i Societat Digital and “PRO2021-S02-PALER – Fauna aquàtica en coves anquihalines del País Valencià: un món encara per descriciure” funded by the Institut d’Estudis Catalans. ASG is funded by an APOSTD2019 Research Fellowship from the Generalitat Valenciana and the European Social Fund (ESF). Sampling of the cave dwelling invertebrates was carried out within the frameworks of the Institutional Grant of Ilia State University, Tbilisi, Georgia: “Taxonomy, fauna and ecology of the invertebrates in the long and biospeleologically poorly investigated caves of Imereti and Samegrelo regions” and the grant “Conservation actions and invertebrate investigations in Sataplia-Tskaltubo karst caves, Georgia” supported by the Conservation Leadership Programme (CLP). We are grateful to the authors of the World Karst Aquifer Mapping project for providing the GIS data used in the map.

References

Manuscript received: 28 May 2021
Manuscript accepted: 30 September 2021
Published on: xx month 2021
Topic editor: Nesrine Akkari
Desk editor: Eva-Maria Levermann

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the *EJT* consortium: Muséum national d’histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Real Jardín Botánico de Madrid CSIC, Spain; Zoological Research Museum Alexander Koenig, Bonn, Germany; National Museum, Prague, Czech Republic.