ISSN 2118-9773 www.europeanjournaloftaxonomy.eu 2024 · Dal Pos *et al.*

This work is licensed under a Creative Commons Attribution License (CC BY 4.0).

Research article

urn:lsid:zoobank.org:pub:D01FE9CE-15E5-46ED-A83E-F9A44D829D64

Small jewels: two new species of the rare genus Masona van Achterberg (Hymenoptera, Ichneumonoidea, Braconidae), with a catalogue of world species and comments on the peculiar morphology of the genus

Davide DAL POS ¹, Gavin R. BROAD ² & Abigail P. MARTENS ³

¹Department of Biology, University of Central Florida, Orlando 4110, Libra Dr. Rm 442, Orlando, FL 32816, USA.

²The Natural History Museum, Cromwell Road, London SW7 5BD, UK.

³Department of Agronomy, Horticulture, and Plant Science, South Dakota State University, Brookings, SD 57007, USA.

*Corresponding author: daveliga@gmail.com; davide.dalpos@ucf.edu

²Email: g.broad@nhm.ac.uk

³Email: abigail.martens@sdstate.edu

¹urn:lsid:zoobank.org:author:A305EECF-A046-4575-935F-144641E9F87C ²urn:lsid:zoobank.org:author:D06689DE-526F-4CFA-8BEB-9FB38850754A ³urn:lsid:zoobank.org:author:87B3DC62-C8D8-475A-AD9B-8A5EC7F4091A

Abstract. A comprehensive review of the enigmatic genus *Masona* van Achterberg is provided. Two new species are described from the USA: *Masona neon* Dal Pos & Martens sp. nov. from Puerto Rico, and *Masona wow* Dal Pos & Martens sp. nov. from California. A key to the world species of *Masona* is presented, together with a discussion of the morphology of the genus and an annotated catalogue of the species. [*Masona*] *timpaynei* Quicke, 2019, is excluded from Braconidae and placed as incertae sedis in the Ichneumonidae, subfamily Neorhacodinae.

Keywords. Braconidae, Masoninae, taxonomy, North America, distribution.

Dal Pos D., Broad G.R. & Martens A.P. 2024. Small jewels: two new species of the rare genus *Masona* van Achterberg (Hymenoptera, Ichneumonoidea, Braconidae), with a catalogue of world species and comments on the peculiar morphology of the genus. *European Journal of Taxonomy* 925: 135–160. https://doi.org/10.5852/ejt.2024.925.2457

Introduction

Masoninae van Achterberg, 1995 is considered one of the smallest subfamilies among the Braconidae Nees, 1811, currently composed of two genera and eight species (van Achterberg 1995, 2001; Engel & Bennett 2008; Quicke *et al.* 2019a, 2019b). The subfamily Masoninae was erected by van Achterberg (1995) to accommodate two morphologically peculiar genera: *Mannokeraia* van Achterberg, 1995 and *Masona* van Achterberg, 1995, which were initially grouped into two tribes, Mannokeraiia and Masonini, respectively. At the time, *Mannokeraia* was represented by only one species, *Mannokeraia*

apterus van Achterberg, 1995, while the genus Masona contained four species: Masona bulbofemoralis van Achterberg, 1995, M. infuscata van Achterberg, 1995, M. prognatha van Achterberg, 1995, and M. similis van Achterberg, 1995. In 2001, the first fossil species of Masoninae, Masona pyrinceps van Achterberg, 2001, was described from Dominican amber (van Achterberg 2001). Seven years later, Engel & Bennet (2008) added a new fossil genus, Anoblepsis Engel & Bennett, 2008, and described Anoblepsis konokeraia Engel & Bennet, 2008, based on a single specimen from the same formation as M. pyrinceps. Subsequently, Sharanowski et al. (2011) restructured the subfamily, based on molecular data, and moved Mannokeraia into the braconid subfamily Euphorinae Förster, 1863, therefore indirectly dissolving the two tribes of Masoninae. Recently, two new species of Masona have been described, Masona popeye Quicke & Chaul, 2019 from Brazil (Quicke et al. 2019a), and Masona timpaynei Quicke, 2019 from Australia (Quicke et al. 2019b).

The position of the subfamily Masoninae within the superfamily Ichneumonoidea Latreille, 1802 has recently been a topic of debate. Originally, the subfamily was placed within the Braconidae, but Quicke *et al.* (2019a), based on the, at that time, unpublished phylogenetic data of Quicke *et al.* (2019b), moved Masoninae from the Braconidae into the sister family Ichneumonidae. However, the most recent classification of the Braconidae by Jasso-Martínez *et al.* (2022) recovered *Masona* as sister to the aphidioid complex, thus transferring Masoninae back to the Braconidae. For the purposes of this paper, we are following the classification presented by Jasso-Martinez *et al.* (2022) and retain Masoninae as a subfamily within the Braconidae.

In this contribution, we provide a review of the genus *Masona* with the description of two new species: *Masona neon* Dal Pos & Martens sp. nov., that represents the first described extant species of the genus reported from the Caribbean, and *Masona wow* Dal Pos & Martens sp. nov., that represents the first record of the genus from western North America. Moreover, *Masona bulbofemoralis* van Achterberg, 1995, is reported for the first time for Florida based on the second specimen of the species collected since the original description. The taxonomic position of *Masona timpaynei* is reassessed, and the species is moved into the family Ichneumonidae and placed incertae sedis in the subfamily Neorhacodinae Hedicke, 1922, which is now recorded for Australia for the first time. A comprehensive treatment of the extant species of *Masona*, with comments on the overall morphological features of the genus is provided, together with a key to the species of the world.

Material and methods

Photographs

Images were taken with a Canon Eos 7D, lens Canon MP-E 65 mm f/2.8 $1-5 \times$ Macro and MPlan Apo $10 \times$ Mitutoyo objective mounted onto the EF Telephoto 70–200mm Canon zoom lens. Images were then enhanced using Photoshop ver. 24.4.0.

Treatment of taxa

Morphological terminology follows Sharkey & Wahl (1992) and is aligned with the Hymenoptera Anatomy Ontology (Yoder *et al.* 2010).

For each species, type information, material examined, and relevant comments are provided. Type localities are reported as they appeared in the original publication with the addition of the country of origin. Unavailable names are identified in square brackets (as in Dal Pos *et al.* 2023). The genus of the original combination in species treated as incertae sedis are reported in square brackets. Metasomal tergites are reported abbreviated as T1 (first metasomal tergite), T2 (second metasomal tergite), etc.

Mapping

Maps were produced using QGIS 3.2 using the Esri Imagery (https://www.esri.com) plugins integrated into the Python console for QGIS for the main background layer, and overlaid globe projection using the Thematic Mapping using the Thematic Mapping Engine integration.

List of depositories

ANIC = Australian National Insect Collection, Canberra, Australia

ASUHIC = Arizona State University Hasbrouck Insect Collection, Tempe, AZ, USA

CELC = Coleção Entomológica do Laboratório de Sistemática e Biologia de Coleoptera, Universidade Federal de Viçosa, Viçosa, MG, Brazil

CNC = Canadian National Collection of Insects, Arachnids and Nematodes, Ottawa, Ontario, Canada

DDPC = Davide Dal Pos private collection, Orlando, FL, USA

EMUS = Entomology Museum, Utah State University, Logan, UT, USA

RMNH = Naturalis Biodiversity Center (formerly Rijksmuseum van Natuurlijke Historie), Leiden,
The Netherlands

SBMNH = Santa Barbara Museum of Natural History, Santa Barbara, CA, USA

Data of examined material

Label information for the type specimens is reported verbatim, using the following conventions: / = different lines; // = different labels; italic = handwriting. For non-type specimens, names of collecting localities have been standardized.

Results

Key to the world species of Masona van Achterberg, 1995

The following key has been modified and expanded from that provided in van Achterberg (1995). Only the males of *M. prognatha* and *M. similis* are known. Despite the fact that *timpaynei* is treated as incertae sedis in the subfamily Neorhacodinae in the present paper, we report it here as [*Masona*] *timpaynei*, and we include it into the following key to facilitate identification.

- Antenna with 16 flagellomeres; apical flagellomere 2.2 × as long as wide (Fig. 1A); head in dorsal view strongly narrowing posteriorly (Fig. 1B); occipital carina foveolate (Fig. 1B); body dark brown
- 5. Length of third flagellomere 1.3–1.5 × its width; antenna as long as combined length of head and mesosoma (Figs 10A, 11A); head in dorsal view more robust, slightly narrowed posteriorly (Figs 10A, 11A); occipital carina short in lateral view, not reaching ventral margin of gena (Fig. 10B); precoxal sulcus present, superficially impressed (Fig. 11B); male pterostigma present, weakly defined (male
- Length of third flagellomere about 2.5 × its width; antenna somewhat longer than combined length of head and mesosoma; head in dorsal view less robust, narrowed posteriorly (van Achterberg 1995: figs 735, 741); occipital carina longer in lateral view, almost reaching external ventral margin of gena (van Achterberg 1995: fig. 733); precoxal sulcus absent; male pterostigma absent (male of
- 6. Head smooth, without processes (Fig. 10); pronotum not projecting into a flange, round (Fig. 10);
- Head with two processes on the frons, about half the distance between eyes and occipital carina (Figs 11B, 12A); pronotum with a strongly projecting flange (Fig. 11B); USA (Southwest)
- 7. Antenna with 12–14 flagellomeres; metasoma completely pale yellowish; fore basitarsus in dorsal view more robust (van Achterberg 1995: fig. 734); head in dorsal view slightly less narrowed posteriorly (van Achterberg 1995: fig. 735); length of body of female 0.9–1.2 mm

Antenna with 16 flagellomeres; metasoma (except first tergite) more or less dark brown; fore basitarsus in dorsal view less robust (van Achterberg 1995: fig. 742); head of female in dorsal view slightly more narrowed posteriorly (van Achterberg 1995: fig. 741); length of body of female about 1.7 mm

Taxonomy

Class Insecta Linnaeus, 1758 Order Hymenoptera Linnaeus, 1758 Superfamily Ichneumonoidea Latreille, 1802 Family Braconidae Nees, 1811 Subfamily Masoninae van Achterberg, 1995

Genus Masona van Achterberg, 1995

Masona van Achterberg, 1995: 97. Type species Masona prognatha van Achterberg, 1995, by original designation.

Masonia [sic] – van Achterberg 1995: 154–155. Incorrect subsequent spelling of Masona van Achterberg,

Diagnosis

The genus Masona has a highly unusual morphology relative to the rest of Ichneumonoidea. Quicke et al. (2019b) slightly modified the diagnosis of the genus (and therefore of the subfamily) based on the description of [Masona] timpaynei Quicke, 2019. However, the latter is hereby treated as incertae sedis in the subfamily Neorhacodinae (see below), and, therefore, we report the original characters used to diagnose the genus: (1) head prognathous in most of females, orthognathous in males; (2) ocelli absent

in the female, present in the male; (3) occipital carina absent ventrally; (4) labial palps one-segmented; (5) female wingless, males macropterous; (6) all femora strongly swollen in females; (7) ovipositor short, upcurved, with a long shallow dorsal notch.

Remarks

In the captions for the species *Masona prognatha*, van Achterberg (1995: 154–155, figs 12–32) wrote the genus name as *Masonia*, which also appears on the original holotype label of the species (van Achterberg (1995: fig. 9A). This is clearly a misspelling that unfortunately has never been reported before. *Masonia* should be considered an incorrect subsequent original spelling of the genus *Masona*, rendering the name unavailable (ICZN 1999: Article 33.3).

Masona bulbofemoralis van Achterberg, 1995 Figs 1, 2B, 3

Masona bulbofemoralis van Achterberg, 1995: 98-99 (description, key, distribution, images).

Masona bulbofemoralis – Yu et al. 2016 (catalogue). — Quicke et al. 2019a : 592 (comments); 2019b: appendix S1 (list).

Differential diagnosis

Masona bulbofemoralis can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum present (absent in M. infuscata, M. prognatha, M. similis and M. wow sp. nov.); (2) larger size, about 1.8 mm; (3) brown color (M. neon sp. nov. and M. popeye are completely yellow); (4) non-bulbous propodeum (strongly bulbous in M. popeye); (5) occipital carina foveolate (simple in all the other species of the genus).

Original type series

Holotype (by original designation)

UNITED STATES OF AMERICA • ♀; Georgia, Decatur County; 22 Jun. 1953; P.B. Kannowski leg.; EMUS.

Material examined

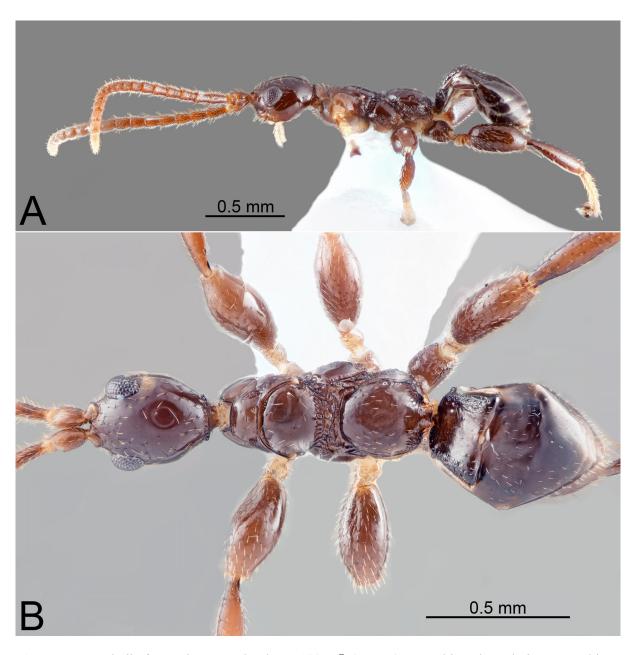
UNITED STATES OF AMERICA • 1 ♀; Florida, Orange Co., Hal Scott Regional Preserve, Cypress swamp; 28.502818° N, 81.134632° W; 5–26 Jul. 2022; D. Dal Pos and A. Pandolfi leg.; D. Dal Pos det., 2022; Malaise trap; DDPC.

Male

Unknown.

Distribution

UNITED STATES OF AMERICA: Georgia (van Achterberg 1995); Florida (new record) (Fig. 3).


Remarks

The specimen reported above is a new record for Florida, expanding the distribution of the species further south, and it is the first specimen recorded since the holotype was collected nearly 70 years ago.

The specimen was collected via Malaise trap at the ecotone between a cypress dome forested wetland and a palm flat wood. During the wet season (June–September), the area is frequently inundated with

water. The Malaise trap was left in situ for an entire year (August 2021–August 2022) but only a single specimen of *M. bulbofemoralis* was collected. The collecting period (5–26 June) matches the month of the holotype collection (22 June 1953).

According to Quicke *et al.* (2019a), *Masona popeye* Quicke & Chaul, 2019, is the largest species of *Masona* currently described, having a body length of 2.0 mm. However, the specimen of *Masona bulbofemoralis* here recorded measures 2.0 mm too.

Fig. 1. *Masona bulbofemoralis* van Achterberg, 1995, ♀ (DDPC). **A**. Habitus, lateral view. **B**. Habitus, dorsal view.

Fig. 2. Propodeum, lateral view. **A.** *Masona popeye* Quicke & Chaul, 2019, holotype, \cite{Q} (CELC). **B.** *Masona bulbofemoralis* van Achterberg, 1995, \cite{Q} (DDPC).

Masona infuscata van Achterberg, 1995 Fig. 4

Masona infuscata van Achterberg, 1995: 99 (description, key, distribution, images).

Masona infuscata – Yu et al. 2016 (catalogue). — Quicke et al. 2019a : 592 (comments); 2019b: appendix S1 (list).

Differential diagnosis

Masona infuscata can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum absent (present in *M. bulbofemoralis*, *M. popeye*, and *M. neon* sp. nov.); (2) first flagellomere about 2.5 × as long as medially wide (1.5 or less in *M. prognatha* and *M. neon* sp. nov.); (3) antenna longer than head and mesosoma together (shorter in *M. prognatha* and *M. wow* sp. nov.); (4) T2–T7 brown (yellow in *M. similis*); (5) body length approximately 1.7 mm (0.9–1.2 mm in *M. similis*); (6) occipital carina well-developed, almost reaching ventral margin of the gena (short in *M. prognatha* and *M. wow* sp. nov.).

Original type series

Holotype (by original designation)

AUSTRALIA • ♀; Queensland, Near Heathlands National Park; 21 Oct.–12 Nov. 1993; P. Zborowski and M. Horak leg.; ANIC.

Fig. 3. Distribution of *Masona* van Achterberg, 1995, in the southeastern USA.

Male

Unknown.

Distribution

AUSTRALIA: Queensland (van Achterberg 1995) (Fig. 4).

Remarks

Known only from the holotype.

Masona neon Dal Pos & Martens sp. nov. urn:lsid:zoobank.org:act:461CAE8C-50C0-468D-A387-A2659E54148D Figs 3, 5, 6B

Differential diagnosis

Masona neon sp. nov. can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum present (absent in M. infuscata, M. prognatha, M. similis and M. wow sp. nov.); (2) yellow color (brown in M. bulbofemoralis); (3) propodeum not inflated (bulbous in M. popeye); (4) a long apical flagellomere, $5 \times$ as long as wide (less than $2 \times$ as long as wide in M. bulbofemoralis); (5) pronotum without a projecting flange (flange present in M. popeye).

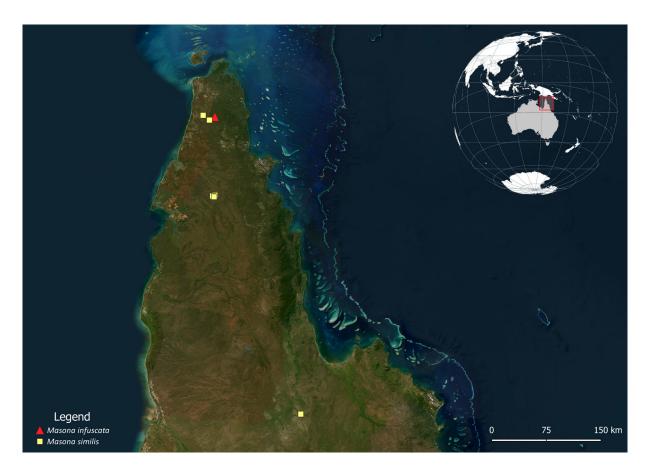
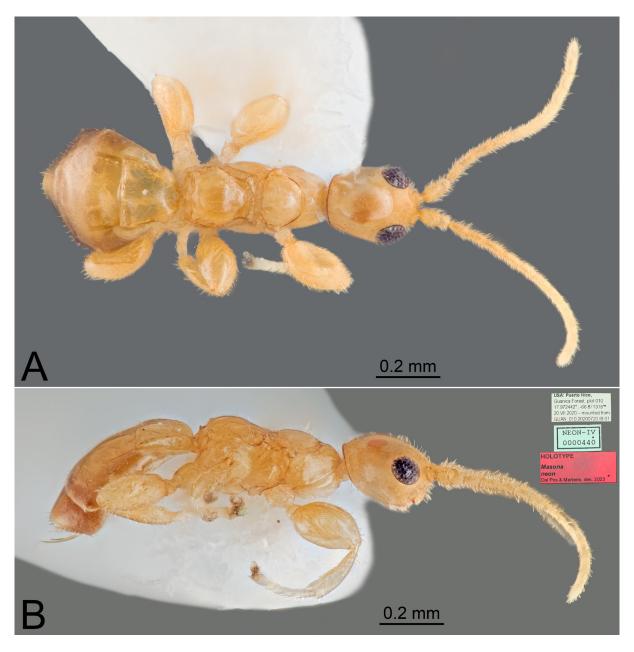
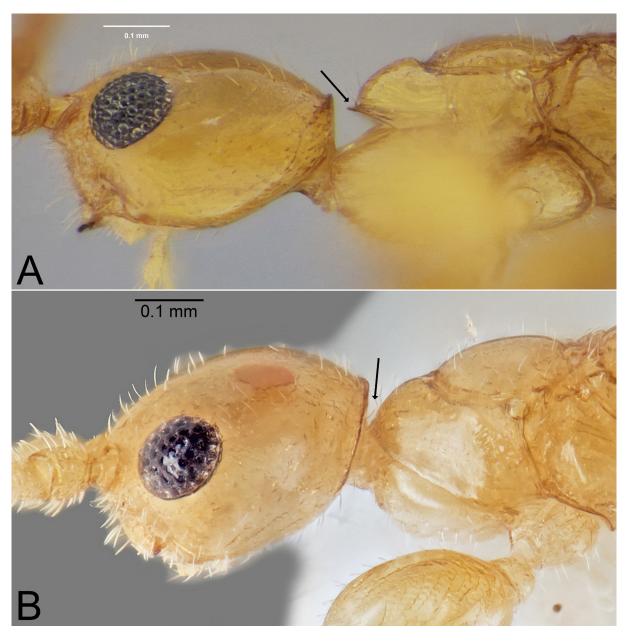



Fig. 4. Distribution of Masona van Achterberg, 1995, in Queensland, Australia.

Etymology

The species is dedicated to the National Ecological Observatory Network (NEON) project (https://www.neonscience.org/), which monitors ecosystems across the USA. This new species was collected as bycatch of a larger pitfall trap project used to monitor Carabidae (Coleoptera). Hopefully, it will serve as an incentive to strengthen collaboration between different disciplines (e.g., ecology and taxonomy), and to increase awareness of the importance of biodiversity monitoring, especially in this period of dire biodiversity crisis. Taxonomy is still active, functional, and crucial for the study of biodiversity. The specific epithet 'neon' is a noun in apposition.

Fig. 5. *Masona neon* Dal Pos & Martens sp. nov., holotype, \bigcirc (ASUHIC). **A.** Habitus, dorsal view. **B.** Habitus, lateral view.


Type material

Holotype

Description

Female

MEASUREMENT. Body length: 1.3 mm.

Fig. 6. Head and pronotum, lateral view. **A.** *Masona popeye* Quicke & Chaul, 2019, holotype, \cite{Q} (CELC). **B.** *Masona neon* Dal Pos & Martens sp. nov., holotype, \cite{Q} (ASUHIC). Arrows indicates the projecting flange of the pronotum.

HEAD. Prognathous, $1.2 \times$ as long as wide, overall smooth and shiny; mandibles strongly twisted and blade-like; clypeus distinct, clearly separated form face, with small tentorial pits; face extremely reduced; occipital carina strong dorsally, gradually dissipating laterally; antenna with 11 flagellomeres, all of which longer than wide, with apical flagellomere $5 \times$ as long as medially wide; scape and pedicel about as long as wide; area between antennal sockets not elevated.

MESOSOMA. Overall smooth and shiny; $2.2 \times$ as long as maximally wide. Pronotum shorter than mesoscutum and without a well-developed, lamelliform carina anteriorly; antescutal depression present. Propleuron convex ventrally, its posterior margin projecting into a point between fore coxae. Mesoscutum $0.8 \times$ as long as wide, notauli absent. Scutellum distinct, approximately $6.0 \times$ as wide as long medially. Mesopleuron smooth and shiny, with sternaulus distinct and reaching mid coxa; postpectal carina complete. Scutellum present. Metanotum indistinct. Propodeum smooth and shiny, widest at midlength, wider than mesoscutum, slightly convex (almost flat) in lateral view, and produced into two blunt apophyses posteriorly; propodeal spiracle round. Metapleuron smooth and shiny, with juxtacoxal carina distinct.

LEGS. Femora extremely expanded, bulbous. Tibiae gradually expanded.

WINGS. Absent.

METASOMA. Overall smooth and shiny. T1 medio-anteriorly concave, with developed dorso-lateral carinae, without laterope, narrow anteriorly, $0.9 \times$ as long as posteriorly wide; T1 spiracle situated in anterior 0.3 of segment. T2 laterally sclerotized, with a distinct articulation with T3. T1–T4 clearly discernible, T5–T8 retracted and indiscernible. Ovipositor barely protruding beyond apex of metasoma, strongly upcurved.

COLORATION. Entire body yellowish-white.

Male

Unknown.

Host

Unknown.

Distribution

UNITED STATES OF AMERICA: Puerto Rico (Fig. 3).

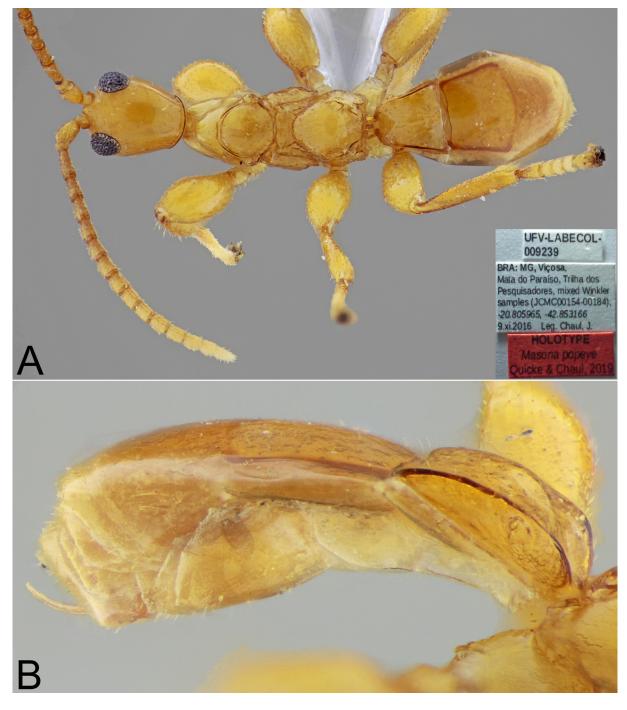
Remarks

The specimen was collected by means of a pitfall trap. The genus *Masona* has been previously recorded from the Caribbean (Dominican Republic) based on the fossil species *Masona pyriceps* van Achterberg, 2001. However, *M. neon* sp. nov. marks the first record of an extant species for the area, and it is the first record of the genus from the island of Puerto Rico.

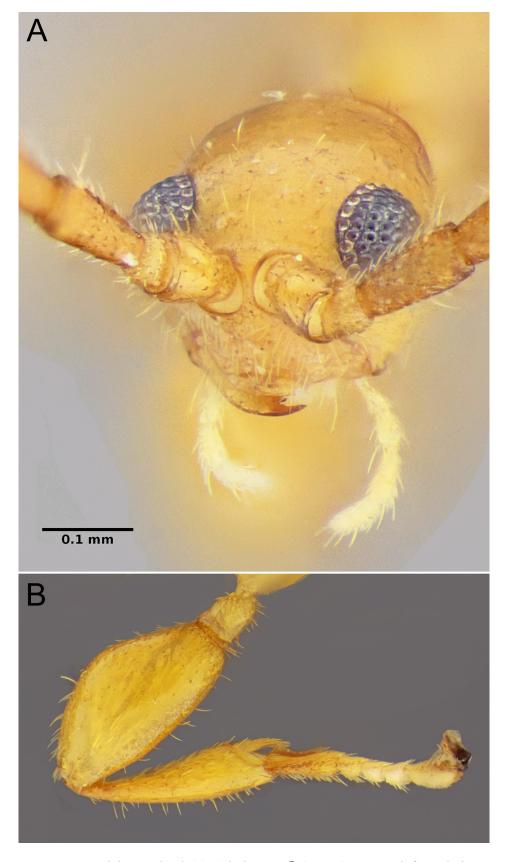
Masona popeye Quicke & Chaul, 2019 Figs 2A, 6A, 7–9

Masona popeye Quicke & Chaul in Quicke et al., 2019a: 588–592 (description, key, distribution, images).

Differential diagnosis


Masona popeye can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum present (absent in M. infuscata, M. prognatha, M. similis and M. wow sp.nov.); (2) strong anterior flange of pronotum (absent in M. bulbofemoralis and M. neon

sp. nov.); (3) bulbous propodeum (not bulbous in *M. bulbofemoralis* and *M. neon* sp. nov.); (4) dorsolateral carina on T1 present (absent in *M. bulbofemoralis*).


Original type series

Holotype (by original designation)

BRAZIL • ♀; Minas Gerais, Mata do Paraíso; 9 Nov. 2016; J. Chaul leg.; CELC.

Fig. 7. *Masona popeye* Quicke & Chaul, 2019, holotype, ♀ (CELC). **A.** Habitus, dorsal view. **B.** Metasoma, lateral view.

Fig. 8. *Masona popey*e Quicke & Chaul, 2019, holotype, ♀ (CELC). **A.** Head, frontal view. **B.** Fore leg, internal view.

Male

Unknown.

Distribution

BRAZIL: Mina Gerais (Quicke et al. 2019a) (Fig. 9).

Remarks

Known only from the holotype.

Masona prognatha van Achterberg, 1995 Figs 3, 10

Masona prognatha van Achterberg, 1995: 100-101 (description, key, distribution, images).

Masona prognatha – Yu et al. 2016 (catalogue). — Quicke et al. 2019a: 588 (notes); 2019b: appendix S1 (list).

Differential diagnosis

Masona progantha can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum absent (present in M. bulbofemoralis, M. neon sp. nov., and M. popeye); (2) processess on head absent (present in M. wow sp. nov.); (3) antenna as long as metasoma

Fig. 9. Distribution of Masona popeye Quicke & Chaul, 2019, in South America.

Fig. 10. *Masona prognatha* van Achterberg, 1995, holotype, ♀ (CNC). **A.** Habitus, dorsal view. **B.** Habitus, lateral view. Downloaded from the public CNC database (available also at https://www.cnc.agr.gc.ca/taxonomy/Taxonomy.php?id=3044).

and head combined (longer in *M. similis* and *M. infuscata*); (4) precoxal sulcus present (absent in *M. similis* and *M. infuscata*); (5) occipital carina short, not reaching the ventral margin of the gena (well-developed in *M. similis* and *M. infuscata*).

Original type series

Holotype (by original designation)

UNITED STATES OF AMERICA • ♀; Florida, Monroe Co., Big Pine Key; 3 May–3 Aug. [19]85; S. and J. Peck leg.; CNC.

Paratypes

UNITED STATES OF AMERICA • 6 $\lozenge \lozenge \lozenge$; CNC, RMNH • 2 $\lozenge \lozenge \lozenge$; CNC.

Material examined

Holotype

Male

Described in van Achterberg (1995).

Distribution

UNITED STATES OF AMERICA: Florida (van Achterberg 1995) (Fig. 3).

Remarks

In the original description, there is an inconsistency in the number of males and females. van Achterberg (1995: 100) listed "6 \circlearrowleft & 2 \circlearrowleft ?" among the paratypes of the species. However, when the author listed the full locality data for each specimen, the number of males amounts to seven and that of females to one.

Known only from the original type series, this species has an interesting distribution: all specimens were collected in the Florida Keys (in Monroe Co., Florida, USA), except for a single specimen collected in mainland Florida at the Archbold Biological Station (Highlands Co., Florida, USA). It is very possible that *Masona prognatha* is associated with the hammock hardwood forests present in South Florida, and this apparently disjunct distribution is mainly due to a lack of sampling in the greater Miami area, between the Florida Keys and the Archbold Biological Station, where hardwood forests are still present as remnants (Fernández-Triana, pers. comm.).

Masona similis van Achterberg, 1995 Fig. 4

Masona similis van Achterberg, 1995: 101–102 (description, key, distribution, images).

Masona similis – Yu et al. 2016 (catalogue). — Quicke et al. 2019b: appendix S1 (list).

Differential diagnosis

Masona similis can be easily distinguished from all the other species of the genus by the following morphological features: (1) scutellum absent (present in M. bulbofemoralis, M. neon sp. nov., M. popeye); (2) first flagellomere about $2.5 \times$ as long as medially wide (1.5 or less in M. prognatha and M. neon

sp. nov.); (3) antenna longer than head and mesosoma together (shorter in *M. prognatha* and *M. wow* sp. nov.); (4) metasoma completely yellow (dark brown in *M. infuscata*); (5) body length approximately 0.9–1.2 mm (1.7 mm in *M. infuscata*); (6) occipital carina well-developed, almost reaching ventral margin of the gena (short in *M. prognatha* and *M. wow* sp. nov.).

Original type series

Holotype (by original designation)

AUSTRALIA • ♀; Queensland, Wenlock, Batavia Downs; 22 Jun.–23 Aug. 1992; P. Zborowski and J. Cardale leg.; ANIC.

Paratypes

AUSTRALIA • 4 $\lozenge \lozenge \lozenge$ (ANIC, RMNH); 9 $\lozenge \lozenge \lozenge$ (ANIC, RMNH).

Male

Described in van Achterberg (1995).

Distribution

AUSTRALIA: Queensland (van Achterberg 1995) (Fig. 4).

Remarks

Known only from the original type series.

Masona wow Dal Pos & Martens sp. nov. urn:lsid:zoobank.org:act:0897F552-3922-49E3-9AEE-ED5DFE687419 Figs 11–13

Differential diagnosis

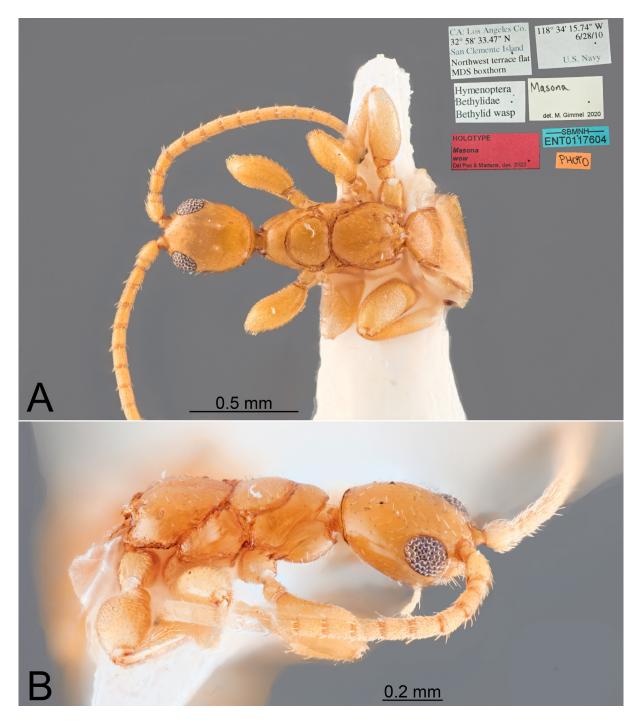
Masona wow sp. nov. can be easily distinguished from all the other species of the genus by the presence of two processes on the dorsal side of the head (absent in all the other species). Other morphological features are: (1) scutellum absent (present in M. bulbofemoralis, M. neon sp. nov., and M. popeye); (2) antenna as long as metasoma and head combined (longer in M. similis and M. infuscata); (3) precoxal sulcus present (absent in M. similis and M. infuscata); (4) occipital carina short, not reaching the ventral margin of the gena (well-developed in M. similis and M. infuscata).

Etymology

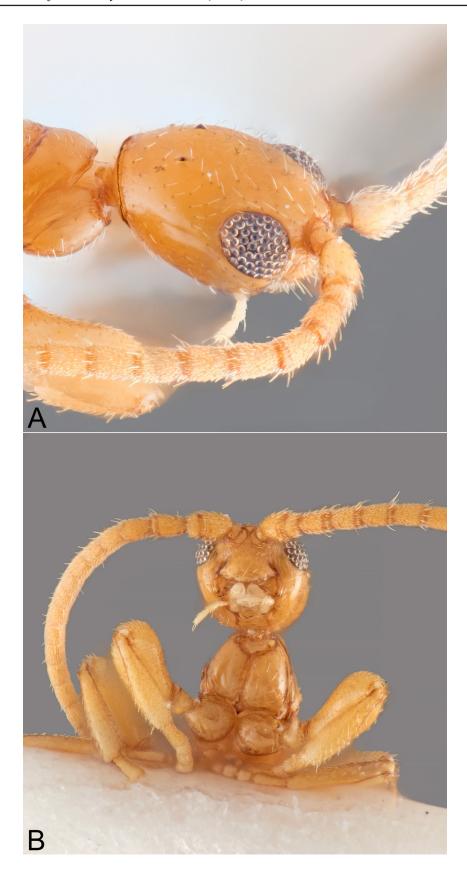
The specific epithet is a noun in apposition based on the common English expression 'wow', that means astonishment and/or admiration. The name refers to the first author (DDP)'s reaction when he first noticed the two unmistakable protuberances on the holotype's head as well as the surprise in discovering a new unmistakable species of this rare genus in the USA.

Type material

Holotype


UNITED STATE OF AMERICA • ♀; "[White label] CA: Los Angeles Co. / 32° 58' 33.47" N / San Clemente Island / Northwest terrace flar / MDS boxthorn // [White label] 118° 34' 15.74" W / 6/28/10 / U.S. Navy// [White label] Hymenoptera / Bethylidae / Bethylid wasp // [Blue label] SBMNH / ENT0117604 // [White label] *Masona* / det. M. Gimmel 2020 // [Orange label] PHOTO // [Red label] HOLOTYPE / *Masona* / wow / Dal Pos & Martens, des. 2023"; SBMNH. The specimen is in very good condition.

Description


Female

Measurement. Body length: 1.5 mm.

HEAD. Prognathous, $1.3 \times$ as long as wide (measured dorsally, across the eyes), overall smooth and shiny; mandibles strongly twisted and blade-like; clypeus distinct, clearly separated form face, with small

Fig. 11. *Masona wow* Dal Pos & Martens sp. nov., holotype, ♀ (SBMNH). **A**. Habitus, dorsal view. **B**. Habitus, lateral view.

Fig. 12. *Masona wow* Dal Pos & Martens sp. nov., holotype, \cite{P} (SBMNH). **A**. Head, dorso-lateral view. **B**. Head and propleuron, ventral view.

tentorial pits; face extremely reduced; occipital carina strong dorsally, gradually dissipating laterally; antenna with 14 flagellomeres, all of which longer than wide, with apical flagellomere 2.2× as long as medially wide; scape and pedicel about as long as wide; area between antennal sockets not elevated; dorsal side of head with two processes beyond middle.

Mesosoma. Overall smooth and shiny; $2.3 \times$ as long as maximally wide. Pronotum shorter than mesoscutum and with a well-developed, lamelliform carina anteriorly; antescutal depression present. Propleuron convex ventrally, its posterior margin projecting into a point between fore coxae. Mesoscutum $0.9 \times$ as long as wide, notauli absent. Scutellum distinct, approximately as long as medially wide. Mesopleuron smooth and shiny, with sternaulus distinct and reaching mid coxae. Scutellum absent. Metanotum indistinct. Propodeum smooth and shiny, widest at midlength, wider than mesoscutum, flat in lateral view, and produced into two blunt apophyses posteriorly; propodeal spiracle round. Metapleuron smooth and shiny, with juxtaocoxal indistinct.

LEGS. Femora extremely expanded, bulbous. Tibiae gradually expanded.

WINGS. Absent.

METASOMA. Overall smooth and shiny. T1 not medio-anteriorly concave, with developed dorso-lateral carinae, without laterope, narrow anteriorly, $0.9 \times$ as long as posteriorly wide; T1 spiracle situated in anterior 0.3 of segment. T2 laterally more sclerotized, with a distinct articulation with T3. T1–T4 clearly discernible, T5–T8 retracted and indiscernible. Ovipositor barely protruding beyond apex of metasoma, strongly upcurved.

Fig. 13. Distribution of Masona wow Dal Pos & Martens sp. nov., in the southwestern USA.

COLORATION. Entire body yellow.

Male

Unknown.

Host

Unknown.

Distribution

UNITED STATES OF AMERICA: California (Fig. 13).

Remarks

Masona wow sp. nov. marks the first record for the species of the genus from the western USA, and it is the first species recorded with two processes on the head, the function of which is unknown.

Family Ichneumonidae Latreille, 1802 Subfamily Neorhacodinae Hedicke, 1922

[Masona] timpaynei Quicke, 2019 [incertae sedis] Fig. 14

Masona timpaynei Quicke in Quicke et al., 2019b: appendix S1 (description, distribution, images).

Original type series

Holotype (by original designation)

AUSTRALIA • ♀; Western Australia, Millstream National Park; 17 Jun. 2014; N. Brougham leg.; ANIC.

Male

Described in the same work (Quicke et al. 2019b).

Distribution

AUSTRALIA: Western Australia (Quicke *et al.* 2019b) (Fig. 14).

Remarks

In the original description, *timpaynei* was placed within *Masona* and distinguished from all the other species of the genus by the following morphological features: (1) wings present in females (absent in all the other species); (2) orthognathous head in females (prognathous in all the other species of the genus). This made *timpaynei* a morphologically unusual species for the genus. Based on the two diagnostic characters that set *M. timpaynei* apart from all the other species, Quicke *et al.* (2019b: appendix S1) redefined the diagnosis of the genus. A careful examination of the characters and the images in the original description led us to believe that *timpaynei* is not a species of *Masona*, nor does it belong to the family Braconidae. In addition to the two diagnostic characters listed to diagnose the species (see above), the presence of a pronounced dorsal notch on the terebra, and the conspicuous ovipositor sheaths, make it unlikely that *timpaynei* could be placed within the genus *Masona*. Moreover, the wing venation and the general habitus (e.g., large pedicel) renders *timpaynei* more similar to a member of the subfamily Neorhacodinae (Ichneumonidae). This also explains why in their phylogenetic analyses, Quicke *et al.* (2019b) retrieved *Masona* nested well within the Ichneumonidae, very differently from the results of Jasso-Martínez *et al.* (2022) who placed *Masona* well within Braconidae.

Even though the correct generic placement is still doubtful and cannot be securely proven without a direct study of the original type series, we can safely place *timpaynei* incertae sedis within the subfamily Neorhacodinae, as [Masona] timpaynei. The description of this species is of great interest still, as the first record of the subfamily Neorhacodinae from Australia.

Current status

Incertae sedis in Neorhacodinae (this work).

Discussion

The scutellum of Masona

Masona presents a very peculiar external anatomy, and one of the big divides between the species of the genus is the presence or absence of a scutellum. In their paper, Quicke et al. (2019a) considered the presence of a scutellum as a less derived state relative to its absence, and concluded that since only two species, Masona pyriceps and M. popeye, have a scutellum, then the origin of the subfamily is likely from the New World. However, in the light of the description of Masona wow Dal Pos & Martens sp. nov., this conclusion is no longer valid as the new species has a New World distribution but does not have a scutellum. Moreover, since the entire superfamily Ichneumonoidea suffers from a lack of modern comprehensive comparative anatomical studies, it is difficult to understand if the structure identified as a scutellum in Masona is actually a scutellum or a different structure. In fact, within Apocrita Gerstaecker, 1867 there are two "scutella": the mesoscutellum (called simply scutellum in Ichneumonoidea) and

Fig. 14. Distribution of [*Masona*] *timpaynei* Quicke, 2019 (Ichneumonidae, Neorhacodinae), in Western Australia.

the *metascutellum* (called postscutellum in Ichneumonoidea, and sometimes identified as the entire metanotum) (e.g., Mikó *et al.* 2007; Vilhelmsen *et al.* 2010). The meso- and metascutellum are areas of the mesonotum and metanotum, respectively. They both accommodate circulatory organs connected to the posterior wing veins via the hollow scutellar arms, functioning as pulsating organs and facilitating the circulation of hemolymph through the wings (Vilhelmsen 2000; Mikó *et al.* 2007; Vilhelmsen *et al.* 2010; Pass 2018). Therefore, as species of *Masona* are mostly wingless, it is logical to expect a reduction or complete disappearance of the scutella (as is the case for *M. prognatha*, *M. infuscata*, *M. similis* and *M. wow* sp. nov.). The question remains as to why in some species the mesoscutellum is still present. We identified two possibilities: (1) the mesoscutellum has lost its function as a pulsating organ, accompanied by a loss of the mesoscutello-metanotal muscle; or (2) the mesoscutellum has been incorrectly identified as such and is a different structure that occupies the same area of the mesoscutellum between the mesoscutum and the metapectal-propodeal complex. Further comparative analysis of the skeleto-musculature of *Masona* will be necessary to investigate the presence or absence of the mesoscutello-metanotal muscle as well as to align the terminology with the rest of the group.

Distribution and ecology

The overall distribution of *Masona* is scattered, with species known only from three biogeographical regions: Australasia, Nearctic, and Neotropical. However, both van Achterberg (1995) and Quicke *et al.* (2019a) reported the presence of two undescribed species from the Afrotropical and Indomalayan regions, respectively, and, in the CNC collection, there are specimens from Kenya and Madagascar (Fernández-Triana, pers. comm.). Although these species remain undescribed, when taken into consideration they create a more cosmopolitan distribution for the genus, which is then missing only from the Palaearctic region. As already underlined by Quicke *et al.* (2019a), more sampling of leaf-litter fauna should produce specimens and will ultimately be useful for filling the gaps in the distribution of this genus.

The host association and ecology of the species of *Masona* is entirely unknown. The known species have been collected mostly by Malaise or pitfall trap, and no direct observation or rearing from host has ever been reported. *Masona prognatha* appears to be associated with tropical hardwood hammocks, typical habitats of south Florida (Key islands included), while *Masona bulbofemoralis* is associated for the first time with a Cypress dome, a common habitat in Florida and in the Atlantic and Gulf coastal plains, which is commonly flooded for 6–9 months a year (Casey & Ewel 1998). The new specimen of *M. bulbofemoralis* was collected at the ecotone of these habitats, during the summer period which is peak flooding season in Florida. The Australian species appears more associated with heathlands, and dense-canopied, mixed shrubland habitat that is typical of Australia.

Acknowledgments

Our biggest thanks go to Andrew Johnston (ASUHIC) and Matthew Gimmel (NHSB) for allowing the study of the two specimens described in this paper, and to Júlio Cézar Mário Chaul (Universidade Federal de Viçosa, Brazil) for sharing the images of *Masona popeye*. We are grateful to the team of the St Johns River Water Management District, and specifically to Graham Williams, for allowing DDP to access and collect specimens at the Hal Scott Regional Preserver and Park (Orlando, FL), which led to the discovery of the new record of the species *Masona bulbofemoralis* for Florida. A big thank you goes to José Fernandez-Triana and to an anonymous reviewer for substantially improving the manuscript and for their lovely comments of appreciation. This research was partially supported by the United States National Science Foundation (NSF: DEB-1916788) grant awarded to Barbara J. Sharanowski (University of Central Florida, USA).

References

Casey W.P. & Ewel K.C. 1998. Soil redox potential in small pondcypress swamps after harvesting. *Forest Ecology and Management* 112: 281–287. https://doi.org/10.1016/S0378-1127(98)00409-5

Dal Pos D., Claridge B., Diller E., van Noort S. & Di Giovanni F. 2023. Still counting: new records, nomenclatural notes, and three new species of Phaeogenini (Hymenoptera, Ichneumonidae, Ichneumoninae) from the Afrotropical region. *European Journal of Taxonomy* 868: 1–71. https://doi.org/10.5852/ejt.2023.868.2105

Engel M.S. & Bennett D.J. 2008. *Anoblepsis*, a new bizarre braconid wasp genus in Dominica Amber (Hymenoptera: Braconidae). *Journal of the Kansas Entomological Society* 81: 368–372. https://doi.org/10.2317/802.02.1

ICZN. 1999. *International Code of Zoological Nomenclature. Fourth Edition*. The International Trust for Zoological Nomenclature. London, UK.

Jasso-Martínez J.M., Santos B.F., Zaldívar-Riverón A., Fernández-Triana J.L., Sharanowski B.J., Richter R., Dettman J.R., Blaimer B.B., Brady S.G. & Kula R.R. 2022. Phylogenomics of braconid wasps (Hymenoptera, Braconidae) sheds light on classification and the evolution of parasitoid life history traits. *Molecular Phylogenetics and Evolution* 173: 107452. https://doi.org/10.1016/j.ympev.2022.107452

Mikó I., Vilhelmsen L., Johnson N.F., Masner L. & Penzes Z. 2007. Skeletomusculature of Scelionidae (Hymenoptera: Platygastroidea): head and mesosoma. *Zootaxa* 1571: 1–78. https://doi.org/10.11646/zootaxa.1571.1.1

Pass G. 2018. Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. *Arthropod Structure & Development* 47: 391–407. https://doi.org/10.1016/j.asd.2018.05.004

Quicke D.L.J., Chaul J.C.M. & Butcher B.A. 2019a. First South American record of the rare ichneumonoid subfamily Masoninae van Achterberg (Hymenoptera: Ichneumonoidea: Ichneumonidae) with description of a new species from Brazil. *Zootaxa* 4664: 587–593. https://doi.org/10.11646/zootaxa.4664.4.11

Quicke D.L.J., Austin A.D., Fagan-Jeffries E.P., Hebert P.D.N. & Butcher B.A. 2019b. Molecular phylogeny places the enigmatic subfamily Masoninae within the Ichneumonidae, not the Braconidae. *Zoologica Scripta* 49: 64–71. https://doi.org/10.1111/zsc.12390

Sharanowski B.J., Dowling A.P.G. & Sharkey M. 2011. Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for classification. *Systematic Entomology* 36: 549–572. https://doi.org/10.1111/j.1365-3113.2011.00580.x

Sharkey M.J. & Wahl D.B. 1992. Cladistics of the Ichneumonoidea (Hymenoptera). *Journal of Hymenoptera Research* 1: 15–24.

van Achterberg C. 1995. Generic revision of the subfamily Betylobraconinae (Hymenoptera: Braconidae) and other groups with modified fore tarsus. *Zoologische Verhandelingen Leiden* 298: 1–242.

van Achterberg C. 2001. The first known fossil Masoninae (Hymenoptera: Braconidae) from Miocene Dominican amber. *Zoologische Mededelingen* 75: 393–396.

Vilhelmsen L. 2000. Before the wasp-waist: comparative anatomy and phylogenetic implications of the skeleto-musculature of the thoraco-abdominal boundary region in basal Hymenoptera (Insecta). *Zoomorphology* 119: 185–221. https://doi.org/10.1007/pl00008493

Vilhelmsen L., Mikó I. & Krogmann L. 2010. Beyond the wasp-waist: structural diversity and phylogenetic significance of the mesosoma in apocritan wasps (Insecta: Hymenoptera). *Zoological Journal of the Linnean Society* 159: 22–194. https://doi.org/10.1111/j.1096-3642.2009.00576.x

Yoder M.J., Mikó I., Seltmann K.C., Bertone M.A. & Deans A.R. 2010. A gross anatomy ontology for Hymenoptera. *PLoS ONE* 5: e15991. https://doi.org/10.1371/journal.pone.0015991

Yu D.S.K., Van Achterberg C. & Horstmann K. 2016. Taxapad 2016, Ichneumonoidea 2015. Database on flash-drive. Nepean, Ontario, Canada.

Manuscript received: 27 August 2023 Manuscript accepted: 18 October 2023

Published on: 11 March 2024 Topic editor: Tony Robillard Desk editor: Radka Rosenbaumová

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the *EJT* consortium: Muséum national d'histoire naturelle, Paris, France; Meise Botanic Garden, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands; Museo Nacional de Ciencias Naturales-CSIC, Madrid, Spain; Leibniz Institute for the Analysis of Biodiversity Change, Bonn – Hamburg, Germany; National Museum of the Czech Republic, Prague, Czech Republic.