# New insights into the phylogeny and relationships within the worldwide genus Riccardia (Aneuraceae, Marchantiophytina) 

Lucile RABEAU ${ }^{1, *}$, S. Robbert GRADSTEIN ${ }^{2}$, Jean-Yves DUBUISSON ${ }^{3}$, Martin NEBEL ${ }^{4}$, Dietmar QUANDT ${ }^{5}$ \& Catherine REEB ${ }^{6}$<br>${ }_{1,2,3,6}$ Université Pierre et Marie Curie - Sorbonne Universités - Institut de Systématique, Évolution, Biodiversité, ISYEB, UMR 7205, CNRS-MNHN-UPMC-EPHE, Muséum national d'Histoire naturelle, 57 rue Cuvier, CP 39, 75005 Paris, France.<br>${ }^{4}$ Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany.<br>${ }^{5}$ Nees-Institut für Biodiversität der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 170, 53115 Bonn, Germany.<br>* Corresponding author: lrabeau@mnhn.fr<br>${ }^{2}$ Email: gradstein@mnhn.fr<br>${ }^{3}$ Email: jydubuisson@gmail.com<br>${ }^{4}$ Email: martin.nebel@smns-bw.de<br>${ }^{5}$ Email: quandt@uni-bonn.de<br>${ }^{6}$ Email: reeb@mnhn.fr


#### Abstract

With 280 accepted species, the genus Riccardia S.F.Gray (Aneuraceae) is one of the most speciose genera of simple thalloid liverworts. The current classification of this genus is based on morphological and limited-sampling molecular studies. Very few molecular data are available and a comprehensive view of evolutionary relationships within the genus is still lacking. A phylogeny focusing on relationships within the large genus Riccardia has not been conducted. Here we propose the first worldwide molecular phylogeny of the genus Riccardia, based on Bayesian inference and parsimony ratchet analyses of sequences from three plastid regions ( $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}, r p s 4, \operatorname{trn} \mathrm{~L}-\mathrm{F}$ ). The results support the monophyly of Riccardia and a new monospecific genus, Afroriccardia Reeb \& Gradst. gen. nov., is described based on molecular and morphological evidence. The results indicate that several currently recognized infrageneric divisions and a few species are not monophyletic, suggesting that further analyses are needed to arrive at a proper understanding of the phylogeny of the genus. Although evidence for an Andean clade was found, most of the species appear scattered in different clades without clear geographical segregation. Broader sampling and further analyses are necessary in order to improve our understanding of the phylogeny of this poorly known liverwort genus.


Keywords. Afroriccardia gen. nov., Aneuraceae, liverworts, phylogeny, Riccardia.
Rabeau L., Gradstein S.R., Dubuisson J.-Y., Nebel M., Quandt D. \& Reeb C. 2017. New insights into the phylogeny and relationships within the worldwide genus Riccardia (Aneuraceae, Marchantiophytina). European Journal of Taxonomy 273: 1-26. http://dx.doi.org/10.5852/ejt.2017.273

## Introduction

Among simple thalloid liverworts (Marchantiophytina subclass Metzgeriidae s. lat.), Aneuraceae is the largest family in terms of species number, but remains the least known (Furuki 1991; Preußing et al. 2010). Four genera are accepted so far: Aneura Dumort., Lobatiriccardia (Mizut. \& S.Hatt.) Furuki, Riccardia S.F.Gray and Verdoornia R.M.Schust. (Preußing et al. 2010). A fifth genus, Cryptothallus Malmb., has recently fallen into synonymy under Aneura (Wickett \& Goffinet 2008). Riccardia is the largest genus of the Aneuraceae, with 280 accepted taxa at species level in the last world checklist (Nebel 2016). However, several authors assert that a worldwide taxonomical revision would reduce this number to about a hundred (Schuster 1992; Gradstein 2001; Preußing et al. 2010). On the other hand, a recent study on African Riccardia shows the existence of several cryptic or undescribed species in the genus (Reeb unpubl. res.).

Riccardia species exhibit a simple, pinnate to multi-pinnate thallus, generally without internal differentiation. The development of the gametangia in two rows on short, specialized branches is a synapomorphy of the genus (vs gametangia in several rows in Aneura). The species present great phenotypic plasticity and the lack of constant diagnosis characters has led to difficulties in defining and identifying them. It is widely accepted that Riccardia is one of the most challenging genera of the Marchantiophytina (Hewson 1970; Meenks \& Pócs 1985; Schuster 1989; Furuki 1991).

Riccardia has a cosmopolitan distribution but is predominant in the southern hemisphere; only seven species are encountered in the temperate regions of Europe and North America (Schuster 1992; Paton 1999; Grolle \& Long 2000). The species colonize moist to rather wet substrates (soil, rock, rotten $\log$, bark) in a wide range of habitats, usually under high atmospheric humidity, and do not tolerate desiccation (Schuster 1992).

The genus Riccardia has been divided into ten subgenera: Arceoneura Hässel, Corioneura Furuki, Hyaloneura R.M.Schuster, Lophoneura Hässel, Neoneura Furuki, Phycaneura R.M.Schuster, Riccardia, Spinella (Schiffn.) Hässel, Thornoneura Furuki and Trichotallia Hässel (Mizutani \& Hattori 1957; Hässel de Menendez 1972; Schuster 1985, 1992; Furuki 1991; Nebel 2016). Subgenus Riccardia is the largest and is divided into four sections: Alcicornia Hässel, Crassantia Hässel, Pallidevirida Hässel and Riccardia (Hässel de Menendez 1972; Nebel 2016). The infrageneric divisions are based on morphoanatomical characters and are usually studied at a regional or continental scale. Hewson (1970) arranged the Australasian Riccardia species in five informal groups based on multivariate analysis of qualitative and quantitative traits and did not recognize formal supraspecific entities.

The monophyly of Aneuraceae has been well supported in large-scale liverwort phylogenies (e.g., Qiu \& Palmer 1999; Forrest et al. 2006; He-Nygrén et al. 2006). The first assumptions on relationships among Aneuraceae were proposed in an investigation of symbiosis between Aneura and fungi (Kottke et al. 2003; Wickett \& Goffinet 2008; Bidartondo \& Duckett 2010; Krause et al. 2011). The first phylogeny of the family focused on the genus Lobatiriccardia, including a few Riccardia sequences from Ecuador and Europe (Preußing et al. 2010). However, a phylogeny focusing on the relationships within the large genus Riccardia has not been conducted.

The aim of the present work is to explore the relationships among Riccardia species using a large geographical sampling. This paper is part of a larger study addressing species delimitation, phylogenetic relationships and character evolution within the genus Riccardia, with special reference to Africa.

In this study, we provide support for the monophyly of the genus and highlight several well-supported clades. We also describe a new monospecific genus, Afroriccardia, based on morphological and molecular evidence.

## Material and methods

## Sampling

We studied 98 samples from Europe, southern South America, Tropical America, Africa, Asia and Oceania (Appendix). Specimens were kindly provided by collectors from all around the world and by several herbaria (AK, BORH, CONN, E, HSNU, KLU, PC; see Acknowledgments). Dates of collections spread from 1973 to 2013. Due to low amplification success, specimens older than about 30 years were not selected for molecular work.

## Identification

Each sample was studied in the light microscope after treatment of the thallus with bleach (20\%), degrading the cellular content, and followed by coloration with methylene blue (Rico 2011; Reeb \& Bardat 2014). This greatly enhanced observations of the anatomical structure of the thallus and facilitated identification. Traceability of observations has been insured by numerous photographs of the plants in toto and in transverse section, taken with a Nikon CoolPix P5000 camera.

Identifications were conducted using keys and descriptions published by Arnell (1952, 1963), Hewson (1970), Hässel de Menendez (1972), Meenks \& Pócs (1985), Meenks (1987), Brown \& Braggins (1989), Furuki (1991, 1994, 1995), Schuster (1992), Perold (2001a, 2001b, 2002a, 2002b), Gradstein \& Costa (2003), Wigginton (2004), Gradstein (2011) and Furuki \& Tan (2013).

## Phylogenetic reconstruction

## Choice of markers

The plastid markers $r p s 4, \operatorname{trn} \mathrm{~L}-\mathrm{F}$ and $p s b \mathrm{~A}-\operatorname{tr} n \mathrm{H}$, classically used in phylogenetic reconstructions among bryophytes (Quandt \& Stech 2004; Preußing et al. 2010; Carter 2012), were selected because of their small size ( $<1000 \mathrm{bp}$ ) allowing good amplification success and their potential informative variability at the infra-generic level (Liu et al. 2010; Stech \& Quandt 2010). In total, 291 new sequences generated from 98 samples were used in this study: 95 rps 4 sequences, $98 \operatorname{trnL} \mathrm{~F}$ sequences and 98 psbA-trn H sequences. GenBank accession numbers are given in the Appendix, together with voucher details.

## DNA isolation, amplification and sequencing

Prior to extraction, samples were cleaned under the binocular microscope (dry or humidified with distilled water) using tweezers to remove micro-epiphytic leafy liverwort and debris. A few thalli, preferably green, chlorophyll-rich terminal thallus branches, were selected and placed in a 2 ml Eppendorf tube. Two tungsten beads ( 2 mm ) and one volume of pure silica sand (sable de Fontainebleau) were added to the disrupted tissues, which were crushed in $2-3$ iterations at 30 Hz for 1 min using Quiagen TissueLyser. DNA was extracted from the resulting powder. For older herbarium specimens ( $>10$ years), a supplementary CTAB procedure was applied beforehand: $400 \mu \mathrm{l}$ AP1 lyse buffer $+30 \mu \mathrm{l}$ CTAB buffer $+30 \mu$ l proteinase K were added to each specimen and tubes were placed for $20-24$ hours in a thermocycler at $42^{\circ} \mathrm{C} .460 \mu \mathrm{l}$ of CIA ( $96: 4$ chloroform : isoamyl alcohol) was added to purify and solubilize remaining impurities. Tubes were gently mixed by inversion and centrifuged for 15 min at 13000 rpm and $4^{\circ} \mathrm{C}$. DNA was then extracted following an adapted protocol of Dneasy® Plant Mini Kit Quiagen. Elution was performed in $50 \mu \mathrm{l}$ of AE buffer and deposited a second time on the membrane of the spin column.

Polymerase Chain Reactions (PCR) were performed in a $20 \mu 1$ reaction mixture, containing $2 \mu \mathrm{l}$ of the DNA solution (or $2-3 \mu 1$ of $1 / 10$ diluted DNA solution) and PCR buffer with $1 \mathrm{mM} \mathrm{MgCl}{ }_{2}, 1 \mu \mathrm{DMSO}$ (dymethyl sulfoxide), $1 \mu \mathrm{l}$ BSA (bovine serum albumine), 0.26 mM of dNTP mix, 0.25 mM of each primer $\left(0.5 \mathrm{mM}\right.$ for diluted DNA solution) and $0.06 \mathrm{mM}\left(0.12 \mathrm{mM}\right.$ for diluted DNA) of QbioTaq ${ }^{\circledR}$

Table 1. List of different primers used for amplification of the three markers.

| Region | Primer names | Orientation | Sequence | Length | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $p s b A-t r n \mathrm{H}$ | trnH-psbA-F | F | 5' GTTATGC ATGAACGTA ATGCTC 3 | 22 | Sang et al. 1997 |
|  | trnH-psbA-R | R | 5' CGCGCAT GGTGGATTC ACAATCC $3^{\prime}$ | 23 | Chen et al. 2010 |
|  | $\begin{aligned} & \operatorname{trnK}-\mathrm{psbA} \operatorname{trnH} \\ & 501 \mathrm{~F} \end{aligned}$ | F | 5' TTTCTCA GACGGTATG CC 3' | 18 | Forrest \& Crandall-Stotler 2004 |
|  | trnK-psbA-trnH-TRNHT-R | R | $\begin{gathered} 5^{\prime} \text { GAACGAC } \\ \text { GGGAATTGA } \\ \text { AC } 3^{\prime} \end{gathered}$ | 18 | Forrest \& Crandall-Stotler 2004 |
| $t r n \mathrm{~L}-\mathrm{F}$ | trnL-C-Mosses | F | $\begin{gathered} 5^{\prime} \text { CGAAATT } \\ \text { GGTAGACGC } \\ \text { TACG 3' } \end{gathered}$ | 20 | Quandt \& Stech 2004 |
|  | trnL-F-F | R | 5' ATTTGAA CTGGTGACA CGAG 3' | 20 | Taberlet et al. 1991 |
|  | trnL-E-b49873 | F | $\begin{gathered} 5^{\prime} \text { GGTTCAA } \\ \text { GTCCCTCTA } \\ \text { TCCC } 3 \text { ' } \end{gathered}$ | 20 | Taberlet et al. 1991 |
|  | trnL-E-ric 1 | F | $\begin{aligned} & \text { 5' GGTTCAA } \\ & \text { GTCCCTCCA } \\ & \text { CCCC 3' } \end{aligned}$ | 20 | designed for this study |
|  | trnL-E-ric2 | F | 5' GGTTCAAGT CCCTCYAYC CC 3' | 20 | designed for this study |
|  | trnL-D-a50272 | R | 5' GGGGGTAGA GGGACTTGA AC 3' | 20 | Taberlet et al. 1991 |
| $r p s 4$ | trnS-F | R | $\begin{aligned} & 5^{\prime} \text { TACCGAG } \\ & \text { GGTTCGAAT } \\ & \text { C 3' } \end{aligned}$ | 17 | Souza-Chies et al. 1997 |
|  | rsp5rev | F | $\begin{gathered} \text { 5' ATGTCCC } \\ \text { GTTATCGAG } \\ \text { GACCT 3' } \end{gathered}$ | 21 | Nadot et al. 1994 |
|  | rps4F3 | F | $\begin{aligned} & \text { 5' TTTTTCG } \\ & \text { KTTRGGTAT } \\ & \text { RGTTCC 3' } \\ & \hline \end{aligned}$ | 22 | designed for this study |

(Quiagen) Polymerase. In case of samples with very low amplification signals on gels, $1 \mu$ betaine and $1-2 \mu \mathrm{MgCl}{ }_{2}$ were added.

Amplification was performed using primers and programs presented in Tables 1 and 2. Six additional internal primers were designed using PhyDE v. 0.0997 (Müller et al. 2010) to amplify rps 4 but only one, associated with rps4 trnS-F, gave significant results (Tables 1-2).

Table 2. List of PCR protocols used for each primer couple.

| Region | Primers couples | PCR conditions |
| :---: | :---: | :---: |
| $p s b \mathrm{~A}-t r n \mathrm{H}$ | trnH-psbA-F \& trnH-psbA-R trnK-psbA | $4^{\prime} 94^{\circ} ; 40 \times\left[45^{\prime \prime} 94^{\circ} ; 45^{\prime \prime} 54^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
|  | $\operatorname{trnH} 501 \mathrm{~F}$ \& trnK-psbA-trnH-TRNHT-R | $4^{\prime} 94^{\circ} ; 40 \times\left[45^{\prime \prime} 94^{\circ} ; 45^{\prime \prime} 54^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
| $\operatorname{trnL}-\mathrm{F}$ | trnL-C-Mosses \& trnL-F-F | $4^{\prime} 94^{\circ} ; 40 \times\left[1^{\prime} 94^{\circ} ; 1^{\prime} 55^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
|  | trnL-C-Mosses \& trnL-D-a50272 | $4^{\prime} 94^{\circ} ; 40 \times\left[1^{\prime} 94^{\circ} ; 45^{\prime \prime} 55^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
|  | trnL-E-b49873 \& trnL-F-F | $4^{\prime} 94^{\circ} ; 40 \times\left[1^{\prime} 94^{\circ} ; 45^{\prime \prime} 55^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
| $r p s 4$ | rsp5rev \& trnS-F | $4^{\prime} 94^{\circ} ; 45 \times\left[1^{\prime} 94^{\circ} ; 45^{\prime \prime} 53^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 5^{\prime} 72^{\circ}$ |
|  | rsp4F3 \& trnS-F | $4^{\prime} 94^{\circ} ; 45 \times\left[15^{\prime \prime} 94^{\circ} ; 30^{\prime \prime} 53^{\circ} ; 1^{\prime} 72^{\circ}\right] ; 7^{\prime} 72^{\circ}$ |

PCR products were revealed by migration of a $2 \mu$ deposit on agarose gel. PCR revealing positives stripes were sent to Genoscope (supported by the MNHN project BDV-Bibliothèque du Vivant).

## Choice of outgroups

Based on the multi-gene, multi-taxa studies of Crandall-Stotler et al. (2005), Forrest et al. (2006), HeNygrén et al. (2006) and Preußing et al. (2010), sequences of 11 taxa of Aneuraceae, 3 of Metzgeriaceae and 2 of Pleuroziaceae were integrated as outgroups in the molecular matrix: Aneura latissima Spruce, A. pinguis (L.) Dumort., A. mirabilis (Malmb.) Wickett \& Goffinet, Lobatiriccardia alterniloba (Hook.f. \& Taylor) Furuki, L. coronopus (De Not. ex Steph.) Furuki, L. oberwinkleri Nebel, Preussing, Schäf.-Verw. \& D.Quandt, L. verdoornioides Nebel, Preussing, Schäf.-Verw. \& D.Quandt, L. "yakusimensis", L. sp. A1, L. sp. B2 and Verdoornia succulenta R.M.Schust. (Aneuraceae); Apometzgeria pubescens (Schrank.) Kuwah., Metzgeria furcata (L.) Corda and M. myriopoda Lindb. (Metzgeriaceae); and Pleurozia gigantea (F.Weber) Lindb. and P. paradoxa Schiffn. (Pleuroziaceae).

## Sequences alignments

Sequence assembly and elimination of primer annealing sites were conducted using PhyDE v. 0.9971 and Geneious v. 6 (Kearse et al. 2012). The whole data set was aligned manually in PhyDE using the data set of Preußing et al. (2010) as a scaffold and applying the criteria laid out in Kelchner (2000). We identified two hairpin associated inversions in the psbA-trnH intergenic spacer (inversion 1:14 nt stem, 22 nt loop; inversion $2: 23 \mathrm{nt}$ stem, 5 nt loop) both of which were positionally separated in the alignment. Both inversions were included as reverse complemented in the phylogenetic analyses, as discussed in Quandt et al. (2003) and Borsch \& Quandt (2009). Variable and parsimony-informative sites were estimated using MEGA v. 5.2 (Tamura et al. 2011).

## Molecular species delimitation

Identification of Riccardia species is a challenging exercise and misidentifications are very common among herbarium materials (Reeb \& Bardat 2014). Our sampling contained multiple accessions of several morphological species, e.g., R. chamedryfolia (With.) Grolle (13 specimens), R. longispica (Steph.) Pearson (8) and R. fucoidea (Sw.) Schiffn. (6); others were represented by singletons only (R. diminuta Schiffn., R. crenulata Schiffn., etc.; see Appendix). We used molecular species delimitation tools to check the congruence of morphological identifications with genetic signals and to clarify the initial dataset for the phylogenetic analyses while keeping the largest sampling of potential species.

We first used a non-tree based method, ABGD (Automatic Barcode Gap Discovery; Puillandre et al. 2012), not requiring monophyly to propose species delineation, and a tree-based method (Fontaneto et al. 2015), here the Poisson Tree Processes model (PTP; Zhang et al. 2013).

We analysed the initial dataset with ABGD in order to test morphological species delimitation, especially for samples identified as the same taxon. The following parameters were selected: distance Kimura-Nei, $P=0.0057$ ( $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$ and $\operatorname{trnL-F}$ ) and $P=0.0037$ ( $r p s 4$ ). Each gene was analysed independently. We also ran PTP on the bPTP server (http://species.h-its.org/ptp/), with 500000 MCMC generations, thinning set to 100 , burn-in 0.25 and the "remove out-groups" option selected. Input trees were RAxML trees calculated on CIPRES Science Gateway (Miller et al. 2010) under default parameters. Two analyses are provided: PTP_ML (maximum likelihood solution) which gives the most likely solution among the dataset, and PTP_sh (Bayesian solution) which considers the frequency of the nodes across the sampling (Lang et al. 2015). We only retained molecular species with posterior delimitation probabilities higher than 0.91 (Zhang et al. 2013).

All PTP retained species were congruent with ABGD results. Three strategies were selected to keep the largest number of species hypotheses: (1) if two samples assigned to the same morpho-species were considered as separate species with ABGD, we kept the two accessions; (2) if several samples assigned to the same morpho-species were considered as one species with ABGD, we selected the most informative accession (length and sequence quality); (3) if several samples assigned to different morpho-species were considered as the same species with ABGD, identifications were checked; when the initial species hypotheses were confirmed, the accessions of the different morpho-species were retained. Finally, we built a concatenated alignment with the reduced dataset (Appendix) based on ABGD / PTP analyses.

## Phylogenetic analyses

File commands for the parsimony ratchet analysis (Nixon 1999) were generated by PRAP2 (Müller 2007) and run in PAUP.4.0 (Swofford 2002) with the following parameters: 10 cycles of 200 iterations each, with $25 \%$ positions chosen randomly and overweight to 2 . Gaps were coded as missing data. Branches of minimum size of 0 were automatically collapsed.

The dataset was partitioned a priori on the basis of gene identity, i.e., $r p s 4$, $p \operatorname{sbA}-\operatorname{trn} \mathrm{H}$ and $\operatorname{trn} \mathrm{L}-\mathrm{F}$. For each alignment, the best partitioning scheme and the best nucleotide substitution model were defined using Partition Finder v. 1.1.1 (Lanfear et al. 2012) based on the Akaike Information Criterion. The GTR $+\Gamma+$ I model of sequence evolution and the restriction site model (F81) for binary data were selected. Bayesian analysis was performed using MrBayes v. 3.2.6 (Huelsenbeck et al. 2001) on CIPRES Science Gateway (Miller et al. 2010) and 10 Markov Chain Monte Carlo (MCMC) runs with 4 chains ( $1.5 \times 10^{6}$ generations each) were run simultaneously. Chains were sampled every 1000 generations with the respective trees written to a tree file. We visualized the results with Tracer v. 1.6 (Rambaut et al. 2014) to verify the convergence of the runs. Calculation of the consensus tree and the posterior probabilities of clades were performed after removing the burn-in samples (25\%). Finally, a $50 \%$ majority-rule consensus tree was built in MrBayes.

Consensus topologies and support values were compiled using Inkscape v. 0.91 (The Inkscape Team: https:// inkscape.org). Each name on the tree is formed by the name of the taxon followed by its voucher number.

Following recent studies, trees were rooted with Pleurozia paradoxa MPE02211 (Davis 2004; Forrest \& Crandall-Stotler 2004, 2005; Forrest et al. 2006; Preußing et al. 2010).

Matrices and obtained trees are available on TreeBASE (http://purl.org/phylo/treebase/phylows/study/ TB2:S19453).

Table 3. Number of sequences obtained and number of informative sites for each marker. All the numbers refer to the aligned matrix, except "Range of amplicon size", which refers to unaligned sequences. rps 4F3 refers to the part of rps 4 obtained with the newly designed primers. trnL-F information is detailed for the two internal portions often sequenced and concatenated for older samples. Percentage values are indicated in brackets next to absolute values for conserved, variable, parsim-info and singleton sites.

| Loci |  | No. of <br> sites | Conserved <br> sites | Variable <br> sites | Parsim-info <br> sites | Singleton <br> sites | Range of <br> amplicon size |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $r p s 4$ |  <br> trnS-F (partial) <br>  <br> trnS-F | 680 | $264(39 \%)$ | $362(53 \%)$ | $301(44 \%)$ | $53(8 \%)$ | $426-504$ |
| trnL-F | 614 | $229(37 \%)$ | $331(54 \%)$ | $274(45 \%)$ | $49(8 \%)$ | $660-726$ |  |
|  | trnL-C-Mosses <br> $\&$ trnL-F-F <br> (total) <br> trnL-C-Mosses <br> $\& ~ t r n L-~$ | 878 | $303(35 \%)$ | $373(43 \%)$ | $294(33 \%)$ | $52(6 \%)$ | $441-512$ |
|  | 502 | $186(37 \%)$ | $239(48 \%)$ | $200(40 \%)$ | $35(7 \%)$ | $316-351$ |  |
| D-a50272 <br> trnL-E-b49873 <br> $\& ~ t r n L-F-F ~$ | 351 | $98(28 \%)$ | $132(38 \%)$ | $92(26 \%)$ | $17(5 \%)$ | $83-165$ |  |
| psbA-trnH | 324 | $139(42 \%)$ | $157(48 \%)$ | $133(41 \%)$ | $24(7 \%)$ | $241-268$ |  |
| Total for matrix | 1882 | $706(38 \%)$ | $892(47 \%)$ | $728(39 \%)$ | $129(7 \%)$ | - |  |

## Results

## Sequences and alignments

The final concatenated plastid matrix contained 1882 positions, including 706 conserved sites, 892 variable sites, and 728 informative sites (Table 3). Length variation for each marker is also given in this table. As we did not get full rps 4 sequences for all specimens, we excluded the terminal part in order to avoid a high level of missing data. A homo-polynucleotide stretch (position 350 to 356 ) within P8 of the $\operatorname{trnL}$ group I intron (compare with Quandt \& Stech 2005) wa been excluded from the phylogenetic analysis due to its ambiguous homology assessment (compare with Kelchner 2000).

## Species delimitation

According to ABGD analyses, 48 molecular clusters were detected with rps 4,40 with psbA-trn H and 46 with $\operatorname{trnL-F~(Table~4).~With~PTP\_ Ph~analyses,~only~} 13$ molecular species hypotheses showed more than 0.90 support for $\operatorname{trnL-F,~} 10$ for $p s b \mathrm{~A}-\operatorname{trnH}$; with PTP_ML it was 11 for $\operatorname{trnL} \mathrm{F}$ and 10 for $p s b \mathrm{~A}-$ $\operatorname{trnH}$. These well-supported clusters support ABGD results. However, some clusters found with ABGD were not statistically confirmed with PTP (Table 4). Based on the smallest well-supported clusters, 55 species hypotheses were retained (Appendix). For example, Riccardia chamedryfolia was reduced from 13 samples to 2, R. longispica from 8 to 2, and Afroriccardia comosa (Steph.) Reeb \& Gradst. comb. nov. from 4 samples to one (Appendix).

## Phylogenetic analyses

Five main lineages were detected by both Bayesian inference (Fig. 1) and parsimony ratchet (Fig. 2) within the Aneuraceae: Lobatiriccardia, Verdoornia, Aneura, Riccardia and a fifth lineage proposed as a new genus, Afroriccardia gen. nov. (see below). Verdoornia is sister to all other genera. The clade

Table 4. Comparison of results given by three different methods of species delimitation used for our study in terms of number of species hypotheses: ABGD, PTP and morphological delimitation.

|  | Loci | No. of groups <br> (Riccardia + outgroups) | No. of groups <br> (Riccardia only) |
| :---: | :---: | :---: | :---: |
| ABGD | $r p s 4$ | 53 | 46 |
|  | $p s b A-t r n \mathrm{H}$ | 44 | 43 |
|  | $\operatorname{trnL}-\mathrm{F}$ | 65 | 49 |
|  | Total matrix | 44 | 36 |
| PTP $(>0.91$ posterior | $r p s 4$ | 13 | 8 |
| delimitation probability $)$ | $p s b A-t r n \mathrm{H}$ | 10 | 10 |
|  | $\operatorname{trnL}-\mathrm{F}$ | 10 | 7 |
|  | Total matrix | 14 | 10 |
| Morphology |  | 58 | 41 |
| Final no. retained |  | - | 59 |

including Aneura and Lobatiriccardia is sister to the clade formed by Afroriccardia and Riccardia. The monophyly of each genus was strongly supported in all analyses.

Within the genus Riccardia, clades were usually very well supported, with few exceptions. In the case of conserved species hypotheses with the same name, two cases were observed: (1) all hypotheses formed a clade (R. alcicornis (Hook.f. \& Taylor) Trevis, R. conimitra (Steph.) A.Evans, R. elata (Steph.) Schiffn., R. pallida (Spruce) Meenks \& C.De Jong, R. stipatiflora (Steph.) Pagan); (2) species hypotheses were scattered through the tree, not forming a monophyletic group (R. aeruginosa Furuki, R. sp8), although this might also due to identification problems.

The origin of our identified samples was congruent with the published distribution of the taxa except for the New Caledonian sample of Riccardia cf. nagasakiensis (Steph.) S.Hatt. The latter species is considered endemic to Japan (Fig. 2).

## Description of the new genus Afroriccardia

In the consensus tree Afroriccardia comosa is a strongly supported lineage sister to the genus Riccardia (Figs 1-2). The four samples of this taxon in the initial dataset (Appendix) were confirmed by all species delimitation analyses as a single molecular species. It resembles Lobaticcardia in the broad, pinnately branched thallus and the wide expansion of rhizoids on the ventral face (Furuki 1991; Preußing et al. 2010), and was therefore initially assigned to the latter genus by Reeb \& Bardat (2014). Hence Aneura comosa Steph. is not cited in the world checklist (Nebel 2016). However, the species clearly differs from Lobatiriccardia by having long female branches (to 1 cm long) and two regular rows of gametangia. The latter two characters are shared with Riccardia but the dense clusters of rhizoids covering the archegonia clearly separate Afroriccardia comosa from Riccardia. Since the morphological differences with Riccardia are subtle, Afroriccardia comosa could be considered a separate subgenus of the latter. Based on the topology of the tree (Figs 1-2) and its early divergence from Riccardia, however, this taxon is placed here in the new genus Afroriccardia. The genus contains one species, Afroriccardia comosa, restricted to East Africa and the western Indian Ocean. The hierarchy below follows CrandallStotler et al. (2009) and Ruggiero et al. (2015).


Fig. 1. The $50 \%$ majority-rule consensus of the trees generated by Bayesian Inference (BI) of the combined $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}, \operatorname{rps} 4$ and $\operatorname{trnL}-\mathrm{F}$ dataset. Posterior probability percentages above $80 \%$ are indicated under each node. Species names appear in italics, followed by the corresponding voucher number. Outgroup labels appear in light grey. Infra-generic divisions (sub-genera and sections) of Riccardia according to Nebel (2016) are reported in front of each name. The corresponding colour scheme for each sub-generic division is shown in the bottom left proportion of the figure.


Fig. 2. This topology shows the result of the maximum parsimony ratchet. Bootstrap proportions above $80 \%$ are indicated under each node. Species names appear in italics, followed by the corresponding voucher number. Outgroup labels appear in light grey. The geographical origin of each Riccardia or Afroriccardia sample is marked by bold rectangles. The continental/geographical repartition of each species according to the literature is indicated with rectangles coloured by continents: Europe (purple), North America (red), southern South America (orange), tropical America (brown), Africa (yellow), Asia (green) and Australasia (blue). A grey rectangle indicates new continental records for the species.

# Phylum Streptophyta Bremer (Bremer 1985) <br> Subdivision Marchantiophytina Doweld (Doweld 2001) <br> Class Jungermanniopsida Stotler \& Crand.-Stotl. (Stotler \& Crandall-Stotler 1977) <br> Order Metzgeriales Chalaud (Chalaud 1930) <br> Family Aneuraceae Klinggr. (Klinggräff 1858) <br> Genus Afroriccardia Reeb \& Gradst. gen. nov. 

## Type species

Afroriccardia comosa (Steph.) Reeb \& Gradst. (三 Aneura comosa Steph.).

## Diagnosis

Thallus (bi)pinnate. Main axis of thallus $2.5-4.0 \mathrm{~mm}$ wide. Rhizoids present over the whole width of the ventral thallus surface. Female branches to 1 mm long, archegonia in pairs, covered by a dense cluster of rhizoids with strongly thick-walled tips originating from beneath the apex of the female branch. Paraphyses lacking.

## Remarks

Monospecific, contains only $A$. comosa from Madagascar, the Mascarene Islands and Uganda.

## Afroriccardia comosa (Steph.) Reeb \& Gradst. comb. nov.

Figs 3-4
Aneura comosa Steph., Botanical Gazette 15 (11): 281. (Stephani 1890). - Riccardia comosa (Steph.) E.W.Jones, Transactions of the British Bryological Society 3: 74. (Jones 1956, nom. inval.). - Type: France, La Réunion, 1889, Rodriguez s.n. (holo- : G-00045027!; iso- : PC-0103522!).

## Material examined

MADAGASCAR: Angavokely Forest, humid rocks in caves, $18^{\circ} 55^{\prime} 16^{\prime \prime} \mathrm{S}, 47^{\circ} 44^{\prime} 30^{\prime \prime} \mathrm{E}, 1600 \mathrm{~m}, 2$ Feb. 2011, Reeb CR11188 (PC, TAN); Zahamena National Park, river crossing the camp, on rocks, $17^{\circ} 38^{\prime} 19^{\prime \prime}$ S, $48^{\circ} 36^{\prime} 46^{\prime \prime}$ E, 1156 m , 28 Dec. 2013, Reeb \& Andriamanantena, CR13Z28, CR13Z32 (PC, TAN); Zahamena National Park, on seeping rocks, highest part of the river crossing the camp, $17^{\circ} 38^{\prime 2} 22^{\prime \prime} \mathrm{S}$, 48³8'45.3" E, 1294 m, 30 Dec. 2013, Reeb \& Andriamanantena CR13Z55 (PC, TAN).

FRANCE, LA RÉUNION: "Sur les mousses, source pétrifiante de Hell-Bourge", G. de l'Isle 220 (PC0716023); "sous Piton de la Fournaise, le long GR2, Réserve de Mare Longue", $21^{\circ} 20^{\prime} 30^{\prime \prime}$ S, $55^{\circ} 44^{\prime} 30^{\prime \prime} \mathrm{E}$, 175-300 m, Vojko 9435B (EGR); without details, De Lisle, De Lisle 570bis (PC-0716024-G 00264057); Rodrigues s.d., s.n. (G-00264058); "plaine des palmistes", s.d., s.col. 56 (PC-0716026).

MAURITIUS: Without details, Rodrigues s.d. s.n. (PC-0716025).
UGANDA: Bwindi National Park, Rukungiri, "Kitahurira bridge. Damp rock surface by stream, shaded site in forest", $1480 \mathrm{~m}, 30$ Jan. 1996, Wigginton U5039A (E-00430553).

## Description

Dioicous. Thallus green, to 7 cm long, main axes $2.5-4.0 \mathrm{~mm}$ wide, creeping, $\pm$ regularly (bi-)pinnate, with 1-2 reiterations, branches alternate to subopposite, stolons not observed. Rhizoids developing over the whole width of the ventral surface of the thallus. Main axes plano-convex to biconvex, 6-8( -10 ) cells thick, margin entire, acute to rounded, un-winged, epidermal cells in cross section $1.5-2.0 \times$ smaller than medullary cells, all cells thin-walled. Terminal branches to 8 mm long, $0.8-2.0 \mathrm{~mm}$ wide, $4-5$ cells thick, with a conspicuous, $3-4(-6)$ cells wide wing, branch margins parallel, crenulate, thallus surface cells becoming smaller towards the margin, not or slightly bulging; branch apex rounded to truncate and


Fig. 3. Afroriccardia comosa (Steph.) Reeb \& Gradst. comb. nov. Population close to sample CR13Z28, Zahamena National Park, Alaotra-Mangoro, Madagascar, $17^{\circ} 37^{\prime} 19^{\prime \prime} \mathrm{S}, 48^{\circ} 37^{\prime} 46^{\prime \prime} \mathrm{E}$, altitude 1196 m . A. Photographs of the thallus. B. Magnified view of the thallus showing solitary female branches (red arrows). Scale bars $=1 \mathrm{~cm}$.
usually narrowly incised (to $130 \mu \mathrm{~m}$ deep). Mucilage papillae on branches ca 20 , present below the apex and in four rows on the ventral branch surface.

Female branches solitary or grouped on main axes and primary branches, $0.5-1.0 \mathrm{~mm}$ long, archegonia (unfertilized ones seen only) in pairs, covered by a dense cluster of rhizoids originating from beneath the apex of the female branches, rhizoids up to 0.7 mm long, with strongly thick-walled tips. Multicellular paraphyses lacking. Male branches, calyptra and sporophyte not seen. Vegetative reproduction not observed.

## Distribution

Afroriccardia comosa is a rare species that was known only from a few old, $19^{\text {th }}$ century collections from La Réunion and Mauritius; the species is newly reported here from Madagascar and Uganda. The species occurs in evergreen humid forest at mid-montane elevations in Uganda and Madagascar (1100-



A


Fig. 4. Afroriccardia comosa (Steph.) Reeb \& Gradst. comb. nov. A. Habit of the thallus, Wigginton U5039a, Reeb \& Andriamanantena CR13Z28. B. Ventral face showing the wide insertion of rhizoids, DeLisle 220. C. Cross section of main axis showing variability in the thickening of cell walls, Reeb \& Andriamanantena CR13Z28, holotype G0045027. D. Cross section of ultimate branch, holotype G0045027. E. Detail of female branch with dense cluster of rhizoids, holotype G0045027. Scale bars: $A-B=1 \mathrm{~mm} ; C=100 \mu \mathrm{~m}$.

1600 m ), and at lower elevations in La Réunion (175-300 m). Where habitat information is available, it was always collected on damp rock surfaces, in shaded places, close to water beds (shaded rivers, entrance of caves with water).

## Discussion

## Differences in success of amplification for the three markers

We observed a significant difference of the PCR success between the three plastid markers (Table 5). The matching of primers on $r p s 4$ sequences allowed us to detect variability near the 3 ' end of the two primers ( F and R ). This variability was only found in Riccardia and might affect primer annealing and thus reduce the amplification success. New primers were designed and tested in order to enhance $r p s 4$ PCR success (Tables 1-2). Only a part of rps 4 could be amplified, for $40 \%$ of our final dataset. Improving this marker amplification for classical PCR still remains a challenge.

Most of the samples were herbarium specimens of various ages, dried under unknown conditions. Since these poikilohydrous plants are quite sensitive to humidity variation in their storage area, the DNA of these herbarium specimens can easily degrade. Internal primers generate shorter sequences, allowing amplification of deteriorated DNA. However, it implies an increase of experimentation time and budget, especially in the case of a large dataset.

## Species delimitation

Molecular species delimitation using ABGD and PTP is sensitive to balanced sampling, especially in number of replicates per taxon (Puillandre et al. 2012; Zhang et al. 2013; Lang et al. 2015). The initial dataset (Appendix) contained singletons and some taxa with more than ten samples (Riccardia chamedryfolia). Some specimens of the latter species, from the Atlantic islands, Africa and Guadeloupe, were not initially identified as R. chamedryfolia but their proximity was revealed by the molecular analyses. Even if $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}, \operatorname{trn} \mathrm{L}-\mathrm{F}$ and $r p s 4$ are located in the same area of the plastid genome (Wicke et al. 2011), they have not necessarily evolved in the same way or at the same speed (Preußing et al. 2010). ABGD was initially a unilocus tool based on calculated barcode gap outside the confidence interval (at $95 \%$ ) of the population mutation rate $\theta$, given a prior P of maximum intraspecific divergence (Puillandre et al. 2012; Fontaneto et al. 2015). We therefore analysed each gene independently. Although the results of the analysis of each of the three markers were rather similar, the dataset was most finely split with $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$. On the other hand, analysis with the concatenated markers did not separate all species. However, the latter has to be considered carefully. If the inversions that might occur at the population level (compare with Quandt et al. 2003), as, e.g., observed here in the psbA-trnH intergenic spacer, are not detected, the molecular species delimitation using ABGD and PTP will return a wrong concept (data not shown).

With PTP, even though the convergence of the runs was moderate to good, only singleton species were highly supported ( $>0.91$ ). Changing of parameters did not improve the results. It is possible that the PTP results were affected by unbalanced sampling and missing data.

Our phylogenetic results show that at least two species, Riccardia aeruginosa and $R$. sp8, are not monophyletic (Figs 1-2). These results may indicate that (1) samples were misidentified, (2) samples may represent undescribed species, (3) PCR contamination occurred, or (4) the species is paraphyletic. The latter case may be verified with tools such as Haplowebs (Fontaneto et al. 2015). Non-monophyly of species is frequently detected in bryophytes and molecular analyses are an important tool to reveal the existence of morphologically distinct species that would otherwise have remained undetected (e.g., Sukkharak et al. 2011; Hutsemékers et al. 2012; Aranda et al. 2014; Hedenäs et al. 2014; Heinrichs et al. 2015).

Table 5. Overview of PCR success depending on primer couples employed.

| Region | Primers | Total PCR <br> number | Successful <br> PCR | Failed PCR | \% success |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $r p s 4$ | rps5rev \& trnS-F | 139 | 46 | 93 | $33 \%$ |
|  | rps4F3 \& trnS-F | 45 | 44 | 1 | $98.00 \%$ |
|  | rps4 internal primers | 32 | 0 | 32 | $0 \%$ |
|  | total | 216 | 90 | 126 | $41.70 \%$ |
| trnL-F | trnL-C \& trnL-F | 61 | 46 | 15 | $75.40 \%$ |
|  | trnL-C \& trnL-D | 106 | 71 | 35 | $70.00 \%$ |
|  | trnL-E \& trnL-F | 76 | 61 | 15 | $80.00 \%$ |
|  | total | 243 | 178 | 65 | $73.25 \%$ |
| $p \operatorname{psbA}-\operatorname{trnH}$ | 81 | 79 | 2 | $97.50 \%$ |  |

Some samples morphologically identified as the same species (Riccardia alcicornis, R. elata, R. sp14, R. chamedryfolia, R. longispica, R. conimitra, R. stipatiflora) were separated by at least one ABGD analysis but appeared to form a monophyletic group in all phylogenetic analyses. This could be due to (1) genetic variations among species and/or (2) high sensibility of the marker $p s b \mathrm{~A}-\operatorname{trn} \mathrm{H}$, on which these delimitations were based.

The results indicate that the holarctic Riccardia incurvata Lindb., R. multifida (L.) Gray and R. palmata (Hedw.) Carruth. form a clade together with several African, Asian and Australasian species, but that the largely holarctic $R$. chamedryfolia is not a member of this clade (see also Preußing et al. 2010). Riccardia chamedryfolia is more widespread in the tropics and it seems to often be overlooked or misidentified (Schäfer-Verwimp et al. 2013; Nebel unpubl. res.).The results also provide robust evidence for an Andean clade (R. fucoidea, R. parasitans (Steph.) Meenks \& C.De Jong, R. pallida, R. ciliolata (Spruce) Gradst., R. smaragdina Meenks \& C.De Jong, R. plumiformis (Spruce) Hässel ex Meenks, R. sprucei (Steph.) Meenks \& C.De Jong), earlier hinted at by Preußing et al. (2010).

The clade containing Riccardia amazonica (Spruce) Schiffn. ex Gradst. \& Hekking, R. longispica, R. sp8 and R. cataractarum (Spruce) Schiffn. includes species from warm, low elevation areas of tropical Africa and tropical America. It is an interesting and somewhat puzzling group because of the strong polymorphy of some of the species in this group, contrasting with close genetic distances (Reeb unpubl. res.). All authors agree that R. amazonica is an Afro-American species (e.g., Meenks \& Pócs 1985; Wigginton 2004; Perold 2003; but see Gradstein 2013). However, this is not supported by the experiment, showing that the spores of $R$. amazonica lose their capacity of germination after a few hours (Van Zanten \& Gradstein 1988; Gradstein 2013), making successful long-distance-dispersal by spores unlikely. Some authors suggest polyploïdy as a possible explanation of the large range of morphological variability in R. amazonica (Berrie 1966). A closer look at this species is needed to improve our understanding of the delimitation and biogeography of this widely distributed and highly variable taxon.

## Infrageneric placement

Subgeneric and sectional attribution of the species, following Nebel (2016) is shown on the consensus tree (Fig. 1). It appears that only two subgenera, subg. Arceoneura (R. prehensilis (Hook.f. \& Taylor) C.Massal.) and subg. Riccardia (11 spp.) and three sections of subg. Riccardia (sects Alcicornia, Crassantia and Riccardia, each with 2 spp .) are represented in this study. The subgeneric or sectional placement of the great majority of Riccardia species analysed in this study is uncertain ("incertae sedis").

Therefore, only limited conclusions can be drawn here on the infrageneric placement of Riccardia species. The data indicate that the southern temperate sect. Alcicornia, represented here by R. alcicornis and $R$. conomitra, and the circumpacific sect. Crassantia (R. crassa (Schwägr.) Carrington \& Pearson and R. graeffii (Steph.) Hewson) are polyphyletic because the species of these sections are placed in different lineages in the phylogeny. The two species in sect. Riccardia, R. multifida (type of the genus Riccardia) and R. filicina (Colenso) E.A.Hodgs., are nested in a clade together with three unclassified members of subg. Riccardia ( $R$. aeruginosa, R. nagasakiensis and R. palmata) and four members of the incertae sedis group ( $R$. crenulata, $R$. diminuta, $R$. elata and $R$. incurvata). This suggests that the latter four species belong in subg. Riccardia. The placement of R. eriocaula (Hook.) Besch. \& C.Massal. and R. chamedryfolia in subg. Riccardia (Nebel 2016), is not supported by our phylogeny. Riccardia eriocaula is a morphologically highly unusual species that was placed in subg. Arceoneura by Brown \& Braggins (1989).

Although our sampling has been insufficient to evaluate the infrageneric classification of Riccardia, these first results are suggestive of the very incomplete state of knowledge of the relationships of species within this large genus. A broader sampling of the genus, including representatives of the subgenera not analysed here, is needed to arrive at a better understanding of its phylogeny. In addition, revisions of species at continental and worldwide scales should be carried out, using an integrative taxonomy approach. In future, we plan to extend our sampling and use additional markers, including nuclear ones, in order to produce a more complete phylogeny, including reconstruction of character evolution in the worldwide genus Riccardia.

## Acknowledgments

We thank the following colleagues who kindly sent us specimens of Riccardia for molecular analyses: M. von Konrat (material from Chile and Ecuador), M. Wigginton (Atlantic islands: St. Helena and Ascension), P. de Lange (New Zealand), L. Thouvenot (New Caledonia), C. Ah-Peng (Tahiti and La Réunion), J. Bardat (Comores and La Réunion), B. Goffinet (Chile), J. Cuvertino-Santoni (Patagonia, Chile), Yong Kien Thai (Malaysia), E. Lavocat-Bernard (French Antilles: Martinique and Guadeloupe), V. Hugonnot (France), A. Unterheimer (France) and Ö. Şimşek (Turkey). We also thank the curators of the following institutional herbaria who send us material on loan and allowed us to sequence herbarium samples: AK, BORH, CONN, E, HSNU, KLU and PC. We also would like to thank Agnès Dettai and Cyril Gallut for their kind and helpful advice on primer design. This study has been conducted with the support of the Genoscope thanks to the BDV program "Bibliothèque du vivant" (funding CNRS, MNHN, INRA and CEA) and LabEx ANR-10-LABX-0003-BCDIV with the support of the ANR involved in the program "Investissements d'avenir" with the reference ANR-11-IDEX-0004-02. Sequences were acquired at the "Service de Systématique Moléculaire" of the MNHN (UMS 2700 OMSI) and we thank Céline Bonillo and Josie Lambourdière for their kind help.

## References

Aranda S.C., Gradstein S.R., Patiño J., Laenen B., Désamoré A. \& Vanderpoorten A. 2014. Phylogeny, classification and species delimitation in the liverwort genus Odontoschisma (Cephaloziaceae). Taxon 63: 1008-1025. http://dx.doi.org/10.12705/635.12

Arnell S. 1952. South African species of Riccardia. Botaniska Notiser 2: 139-156.
Arnell S. 1963. Hepaticae of South Africa. Swedish Natural Science Research Council, Stockholm.
Berrie G.K. 1966. Polyploidy in some West African species of Riccardia (Gray). Revue Bryologique et Lichénologique 34: 302-308.

Bidartondo M.I. \& Duckett J.G. 2010. Conservative ecological and evolutionary patterns in liverwortfungal symbioses. Proceedings of the Royal Society B 277: 485-492. http://dx.doi.org/10.1098/ rspb.2009.1458

Borsch T. \& Quandt D. 2009. Mutational dynamics and phylogenetic utility of non-coding plastid DNA. Plant Systematics and Evolution 282: 169-199. http://dx.doi.org/10.1007/s00606-009-0210-8

Bremer K. 1985. Summary of green plant phylogeny and classification. Cladistics 1:369-385. http:// dx.doi.org/10.1111/j.1096-0031.1985.tb00434.x

Brown E.A. \& Braggins J. 1989. A revision of the genus Riccardia S.F. Gray in New Zealand with notes on the genus Aneura Dum. Journal of the Hattori Botanical Laboratory 66: 1-32.

Carter B.E. 2012. Species delimitation and cryptic diversity in the moss genus Scleropodium (Brachytheciaceae). Molecular Phylogenetics and Evolution 63: 891-903. http://dx.doi.org/10.1016/j. ympev.2012.03.002

Chalaud G. 1930. Les derniers stades de la spermatogénèse chez les hépatiques. Annales Bryologici 3: 41-50.

Chen S., Yao H., Han J., Liu C., Song J., Shi L., Zhu Y., Ma X., Gao T., Pang X., Luo K., Li Y., Li X., Jia X., Lin Y. \& Leon C. 2010. Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE 5(1): e8613. http://dx.doi.org/10.1371/journal.pone. 0008613

Crandall-Stotler B.J., Forrest L. \& Stotler R.E. 2005. Evolutionary trends in the simple thalloid liverworts (Marchantiophyta, Jungermanniopsida subclass Metzgeriidae). Taxon 54: 299-316.

Crandall-Stotler B., Stotler R.E. \& Long D. 2009. Phylogeny and classification of the Marchantiophyta. Edinburgh Journal of Botany 66: 155-198. http://dx.doi.org/10.1017/S0960428609005393

Davis E.C. 2004. A molecular phylogeny of leafy liverworts (Marchantiophyta). Monographs in Systematic Botany from the Missouri Botanical Garden 98: 87-118.

Doweld A. 2001. Prosyllabus Tracheophytorum: Tentamen Systematis Plantarum Vascularium (Tracheophyta). Geos, Moscow.

Fontaneto D., Flot J.F. \& Cuong Q.T. 2015. Guidelines for DNA taxonomy, with a focus on the meiofauna. Marine Biodiversity 45(3): 433-451. http://dx.doi.org/10.1007/s12526-015-0319-7

Forrest L.L. \& Crandall-Stotler B.J. 2004. A phylogeny of the simple thalloid liverworts (Jungermanniopsida, Metzgeriidae) as inferred from five chloroplast genes. Monographs in Systematic Botany from the Missouri Botanical Garden 98: 119-140.

Forrest L.L. \& Crandall-Stotler B.J. 2005. Progress towards a robust phylogeny for the liverworts, with a particular focus on the simple thalloids. Journal of the Hattori Botanical Laboratory 97: 127-159.

Forrest L.L., Davis E.C., Long D.G., Crandall-Stotler B.J., Clark A. \& Hollingsworth M.L. 2006. Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. The Bryologist 109: 303-334. http://dx.doi.org/10.1639/0007-2745(2006)109[303:UTEHOT 12.0.CO;2

Furuki T. 1991. A taxonomical revision of the Aneuraceae (Hepaticae) of Japan. Journal of the Hattori Botanical Laboratory 70: 293-397.

Furuki T. 1994. Taxonomic studies of Asiatic species of Aneuraceae (Hepaticae). III. Riccardia subgen. Thornoneura Furuki. Hikobia 11: 463-467.

Furuki T. 1995. Taxonomic studies of Asiatic species of Aneuraceae (Hepaticae). II. Riccardia subgen. Hyaloneura Schust. Journal of the Hattori Botanical Laboratory 78: 111-118.

Furuki T. \& Tan B.C. 2013. Taxonomical studies of the family Aneuraceae (Marchantiophyta) of Singapore. Natural History Research 12: 71-79.

Gradstein S.R. 2001. Liverworts and hornworts: keys and descriptions. Memoirs of the New York Botanical Garden 86: 70-239.

Gradstein S.R. 2011. Guide to the Liverworts and Hornworts of Java. Seameo Biotrop, Bogor, Indonesia.
Gradstein S.R. 2013. Afro-American hepatics revisited. Polish Botanical Journal 58: 149-177. http:// dx.doi.org/10.2478/pbj-2013-0016

Gradstein S.R. \& Costa D. 2003. The liverworts and hornworts of Brazil. Memoirs of the New York Botanical Garden 87: 1-318.

Grolle R. \& Long D.G. 2000. An annotated checklist of the Hepaticae and Anthocerotae of Europe and Macaronesia. Journal of Bryology 22: 101-140. http://dx.doi.org/10.1179/jbr.2000.22.2.103

Hässel de Menendez G.G. 1972. Revisión taxonómica del género "Riccardia" (Hepaticae). Especies patagónicas y subantarcticas incluyendo las Islas Juan Fernández, Malvinas y Georgia del Sur. Revista del Museo Argentino de Ciencias Naturales "Bernardino Rivadavia" e Instituto Nacional de Investigación de las Ciencias Naturales: Ciencias Botánicas 4: 1-242.

Hedenäs L., Desamoré A., Laenen B., Papp B., Quandt D., Gonzáles-Macebo J.M., Patiño J., Vanderpoorten A. \& Stech M. 2014. Three species for the price of one with the moss Homalothecium sericeum s.1. Taxon 63: 249-257. http://dx.doi.org/10.12705/632.16

Heinrichs J., Feldberg K., Scheben A., Czumaj A., Pócs T., Schneider H. \& Schäfer-Verwimp A. 2015. Integrative taxonomy of Lepidolejeunea (Porellales, Jungermanniopsida): ocelli allow the recognition of two neglected species. Taxon 64: 216-228. http://dx.doi.org/10.12705/642.5

He-Nygrén X., Juslén A., Ahonen I., Glenny D. \& Piippo S. 2006. Illuminating the evolutionary history of liverworts (Marchantiophyta) - towards a natural classification. Cladistics 22: 1-31. http://dx.doi. org/10.1111/j.1096-0031.2006.00089.x

Hewson H.J. 1970. The family Aneuraceae in Australia and New Guinea: the genus Aneura. Proceedings of the Linnean Society of New South Wales 94: 173-193. Available from http://biodiversitylibrary.org/ page/34952501 [accessed 10 Dec. 2016].

Huelsenbeck J.P., Ronquist F., Nielsen R. \& Bollback J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310-2314. http://dx.doi.org/10.1126/science. 1065889

Hutsemékers V., Vieira C.C., Ros R.M., Huttunen S. \& Vanderpoorten A. 2012. Morphology informed by phylogeny reveals unexpected patterns of species differentiation in the aquatic moss Rhynchostegium riparioides s.1. Molecular Phylogeny and Evolution 62: 748-755. http://dx.doi.org/10.1016/j. ympev.2001.11.014

Jones E.W. 1956. African Hepatics: XI. The genus Riccardia in Tropical Africa. Transactions of the British Bryological Society 3: 74-84. http://dx.doi.org/10.1179/006813856804829741

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P. \& Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647-1649. http://dx.doi.org/10.1093/bioinformatics/bts199

Kelchner S.A. 2000. The evolution of non-coding chloroplast DNA and its application in plant systematics. Annals of the Missouri Botanical Garden 87: 482-498. http://dx.doi.org/10.2307/2666142

Klinggräff H.E.M. 1858. Die Höheren Cryptogamen Preussens, 11. Koch, Königsberg.
Kottke I., Beiter A., Weiss M., Haug I., Oberwinkler F., Nebel M. 2003. Heterobasidiomycetes form symbiotic associations with hepatics: Jungermanniales have sebacinoid mycobionts while Aneura pinguis (Metzgeriales) is associated with a Tulasnella species. Mycological Research 107: 957-968. http://dx.doi.org/10.1017/S0953756203008141

Krause C., Garnica S., Bauer R., Nebel M. 2011. Aneuraceae (Metzgeriales) and tulasnelloid fungi (Basidiomycota) - a model for early steps in fungal symbiosis. Fungal Biology 115: 839-851. http:// dx.doi.org/10.1016/j.funbio.2011.06.013

Lanfear R., Calcott B., Ho W.S.Y.W. \& Guindon S. 2012. PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29 (6): 1695-1701. http://dx.doi.org/10.1093/molbev/mss020

Lang A.S., Bocksberger G. \& Stech M. 2015. Phylogeny and species delimitations in European Dicranum (Dicranaceae, Bryophyta) inferred from nuclear and plastid DNA. Molecular Phylogenetics and Evolution 92: 217-225. http://dx.doi.org/10.1016/j.ympev.2015.06.019

Liu Y., Yan H.F., Cao T. \& Ge X. 2010. Evaluation of 10 plant barcodes in Bryophyta (Mosses). Journal of Systematics and Evolution 48: 36-46. http://dx.doi.org/10.1111/j.1759-6831.2009.00063.x

Meenks J. 1987. Studies on Colombian cryptogams. XXVIII. A guide to tropical Andean species of Riccardia. Journal of the Hattori Botanical Laboratory 62: 161-182.

Meenks J. \& Pócs T. 1985. East African bryophytes. IX. Aneuraceae. Abstracta Botanica 9: 79-98.
Miller M.A., Pfeiffer W. \& Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans: 1-8.

Mizutani M. \& Hattori S. 1957. An etude on the systematics of Japanese Riccardias. Journal of the Hattori Botanical Laboratory 18: 27-64.

Müller K. 2007. PRAP2 - Parsimony and likelihood ratchet analyses with PAUP, v. 0.9. Available from http://bioinfweb.info/Software/PRAP2 [accessed 27 Jan. 2017]

Müller K., Quandt D., Müller J. \& Neinhuis C. 2010. PhyDE® 0.997: Phylogenetic Data Editor. Available from http://www.phyde.de [accessed 8 Dec. 2016]

Nadot S., Bajon R. \& LeJeune B. 1994. The chloroplast gene rps4 as a tool for the study of Poaceae phylogeny. Plant Systematics and Evolution 191: 27-38. http://dx.doi.org/10.1007/BF00985340

Nebel M. 2016. Aneuraceae. In: Söderström L., Hagborg A., von Konrat M., Bartholomew-Began S., Bell D., Briscoe L., Brown E., Cargill D.C., Costa D.P., Crandall-Stotler B.J., Cooper E.D., Dauphin G., Engel J.J., Feldberg K., Glenny D., Gradstein S.R., He X., Heinrichs J., Hentschel J., Ilkiu-Borges A.L., Katagiri T., Konstantinova N.A., Larrain J., Long D.G., Nebel M., Pócs T., Felisa Puche F., ReinerDrehwald E., Renner M.A.M., Sass-Gyarmati A., Schäfer-Verwimp A., Segarra-Moragues J.G., Stotler R.E., Sukkharak P., Thiers B.M., Uribe J., Vaňa J., Villarreal J.C., Wigginton M., Zhang L. \& Zhu R.-L. (eds) World Checklist of Hornworts and Liverworts. PhytoKeys 59: 435-456. http://dx.doi.org/10.3897/ phytokeys.59.6261

Nixon K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics 15: 407-414. http://dx.doi.org/10.1111/j.1096-0031.1999.tb00277.x

Paton J.A. 1999. The Liverwort Flora of the British Isles. Harley Books, Colchester, U.K.
Perold S.M. 2001a. Studies in the liverwort family Aneuraceae (Metzgeriales) from southern Africa. 1. The genus Aneura and its local representative. Bothalia 31: 167-173. http://dx.doi.org/10.4102/abc. v31i2.515

Perold S.M. 2001b. Studies in the liverwort family Aneuraceae (Metzgeriales) from southern Africa. 2. The genus Riccardia and its type species, $R$. multifida, with confirmation of its presence in the region. Bothalia 31: 183-187. http://dx.doi.org/10.4102/abc.v31i2.517

Perold S.M. 2002a. Studies in the liverwort family Aneuraceae (Metzgeriales) from northern Africa. 3. Riccardia compacta. Bothalia 32: 15-19. http://dx.doi.org/10.4102/abc.v32i1.457

Perold S.M. 2002b. Studies in the liverwort family Aneuraceae (Metzgeriales) from northern Africa. 4. Riccardia obtusa. Bothalia 32: 181-184. http://dx.doi.org/10.4102/abc.v32i2.481

Perold S.M. 2003. Studies in the liverwort family Aneuraceae (Metzgeriales) from northern Africa. 5. Riccardia amazonica. Bothalia 33: 99-104. http://dx.doi.org/10.4102/abc.v33i1. 434

Preußing M., Olsson S., Schäfer-Verwimp A., Wickett N.J., Wicke S., Quandt D. \& Nebel M. 2010. New insights in the evolution of the liverwort family Aneuraceae (Metzgeriales, Marchantiophyta), with emphasis on the genus Lobatiriccardia. Taxon 59: 1424-1440.

Puillandre N., Lambert A., Brouillet S. \& Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864-1877. http://dx.doi.org/10.1111/j.1365294X.2011.05239.x

Qiu Y.L. \& Palmer J.D. 1999. Phylogeny of early land plants: insights from genes and genomes. Trends in Plant Science 4: 26-30. http://dx.doi.org/10.1016/S1360-1385(98)01361-2

Quandt D. \& Stech M. 2004. Molecular evolution of the trnT-trnF region in bryophytes. Plant Biology 6: 545-554. http://dx.doi.org/10.1055/s-2004-821144

Quandt D. \& Stech M. 2005. Molecular evolution of the $\operatorname{trn} L_{\text {UAA }}$ intron in bryophytes. Molecular Phylogenetics and Evolution 36: 429-443. http://dx.doi.org/10.1016/j.ympev.2005.03.014

Quandt, D. Müller K. \& Huttunen S. 2003. Characterisation of the chloroplast DNA psbT-H region and the influence of dyad symmetrical elements on phylogenetic reconstructions. Plant Biology 5: 400-410. http://dx.doi.org/10.1055/s-2003-42715

Rambaut A., Suchard M.A., Xie D. \& Drummond A.J. 2014. Tracer v. 1.6. Available from http://beast. bio.ed.ac.uk/Tracer/ [accessed 8 Dec. 2016]

Reeb C. \& Bardat J. 2014. Studies on African Riccardia types and related material. Cryptogamie, Bryologie 35: 47-75.

Rico G. 2011. Methods for cell clearing and rehydration in thalloid liverworts. Tropical Bryology 33: 12-18. http://dx.doi.org/10.11646/bde.33.1.3

Ruggiero M.A., Gordon D.P., Orrell T.M., Bailly N., Bourgoin T., Brusca R.C., Cavalier-Smith T., Guiry M.D. \& Kirk P.M. 2015. A higher level classification of all living organisms. PLoS ONE 10: e0119248. http://dx.doi.org/10.1371/journal.pone. 0119248

Sang T., Crawford D. \& Stuessy T. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.

Schäfer-Verwimp A., Lehnert M. \& Nebel M. 2013. Contribution to the knowledge of the bryophyte flora of Ecuador. Phytotaxa 128 (1): 1-63. http://dx.doi.org/10.11646/phytotaxa.128.1.1

Schuster R.M. 1985. Austral Hepaticae, XIX. Some taxa new to New Zealand and New Caledonia. Phytologia 56: 449-464. Available from http://biodiversitylibrary.org/page/13169156 [accessed 10 Dec. 2016]

Schuster R.M. 1989. Studies on the hepatic flora of the Prince Edward Islands. I: Aneuraceae. Journal of the Hattori Botanical Laboratory 67: 59-108.

Schuster R.M. 1992. The Hepaticae and Anthocerotae of North America. Volume VI. Field Museum of Natural History, Chicago.

Souza-Chies T.T, Bittar G., Nadot S., Carter L., Besin E. \& LeJeune B. 1997. Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Systematics and Evolution 204: 109-123. http://dx.doi.org/10.1007/BF00982535

Stech M. \& Quandt D. 2010. 20,000 species and five key markers: the status of molecular bryophyte phylogenetics. Phytotaxa 9: 196-228.

Stephani F. 1890. Hepaticae Africanae novae in insulis Bourbon, Maurice et Madagascar lectae. Botanical Gazette 15 (11): 281-292.

Stotler R. \& Crandall-Stotler B. 1977. A checklist of the liverworts and hornworts of North America. The Bryologist 80: 405-428.

Sukkharak P., Gradstein S.R. \& Stech M. 2011. Phylogeny, taxon circumscriptions, and character evolution in the core Ptychanthoideae (Lejeuneaceae, Marchantiophyta). Taxon 60: 1607-1622.

Swofford D.L. 2002. PAUP*: Phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

Taberlet P., Gielly L., Pautou G. \& Bouvet J. 1991. Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Molecular Biology 17: 1105-1109. http://dx.doi.org/10.1007/ BF00037152

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. \& Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739. http://dx.doi.org/10.1093/ molbev/msr121

Thiers B. Continuously updated. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium. Available from http://sweetgum.nybg.org/ science/ih/ [accessed 8 Dec. 2016].

Van Zanten B.O. \& Gradstein S.R. 1988. Experimental dispersal geography of neotropical liverworts. Beihefte zur Nova Hedwigia 90: 41-94.

Wicke S., Schneeweiss G.M., dePamphilis C.W., Müller K.F. \& Quandt D. 2011. The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Molecular Biology 76: 273-297. http://dx.doi.org/10.1007/s11103-011-9762-4

Wickett N.J. \& Goffinet B. 2008. Origin and relationships of the myc-heterotrophic liverwort Cryptothallus mirabilis Malmb. (Metzgeriales, Marchantiophyta). Botanical Journal of the Linnean Society 156: 1-12. http://dx.doi.org/10.1111/j.1095-8339.2007.00743.x

Wigginton M.J. (ed.) 2004. EW Jones's Liverwort and Hornwort Flora of West Africa. National Botanic Garden, Meise, Belgium.

Zhang J., Kapli P., Pavlidis P. \& Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869-2876. http://dx.doi.org/10.1093/ bioinformatics/btt499

Manuscript received: 16 February 2016
Manuscript accepted: 22 July 2016
Published on: 8 February 2017
Guest editors: Line Le Gall, Frédéric Delsuc, Stéphane Hourdez, Guillaume Lecointre
and Jean-Yves Rasplus
Desk editor: Danny Eibye-Jacobsen

Printed versions of all papers are also deposited in the libraries of the institutes that are members of the EJT consortium: Muséum national d'Histoire naturelle, Paris, France; Botanic Garden Meise, Belgium; Royal Museum for Central Africa, Tervuren, Belgium; Natural History Museum, London, United Kingdom; Royal Belgian Institute of Natural Sciences, Brussels, Belgium; Natural History Museum of Denmark, Copenhagen, Denmark; Naturalis Biodiversity Center, Leiden, the Netherlands.
Appendix. List of specimens, with country of origin (norm ISO 3166-1 alpha-3), family, ABGD partition, bPTP partition, species based on morphological identification, voucher number, herbarium acronym (see Thiers continuously updated) and GenBank accession number (* = missing data). Numbers in the ABGD columns represent the original number of the group given by ABGD for each sample. "Y" in the PTP column indicates retained PTP species. Taxon names in bold indicate samples that appear in Figs 1-2. The full dataset was used in ABGD and bPTP. ASV $=$ Herbarium Alfons Schäfer-Verwimp. Numbered columns: 1, ABGD rps $4 ; 2$, ABGD $p s b \mathrm{~A}-t r n \mathrm{H} ; 3$, ABGD $t r n \mathrm{~L}-\mathrm{F} ; 4$, ABGD total; 5, bPTP $r p s 4$; 6, bPTP $p s b \mathrm{~A}-t r n \mathrm{H} ; 7$, bPTP $t r n \mathrm{~L}-\mathrm{F} ; 8$, PTP total.

| Country | Family | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Taxon | Voucher number | Herbarium | GenBank accession number $t r n \mathrm{~L}-\mathrm{F}$ | GenBank accession number rps 4 | $\begin{gathered} \text { GenBank } \\ \text { accession } \\ \text { number } \\ \text { psbA-trnH } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NZL | Aneuraceae | 2 | 4 | 2 | 2 |  |  |  |  | Riccardia crassa | EVK26688 | AK, PC | KX512012 | KX512202 | KX512124 |
| NCL | Aneuraceae | 2 | 4 | 3 | 2 |  |  |  |  | Riccardia wattsiana | LT12102601a | PC | KX512013 | KX512203 | KX512125 |
| GLP | Aneuraceae | 3 | 3 | 4 | 3 | Y | Y | Y | Y | Riccardia schwaneckei | CR13G17 | PC | KX512014 | KX512204 | KX512123 |
| CHL | Aneuraceae | 4 | 11 | 5 | 4 |  |  |  |  | Riccardia conimitra | VK6524 | PC | KX512015 | KX512205 | KX512170 |
| CHL | Aneuraceae | 4 | 11 | 5 | 4 |  |  |  |  | Riccardia conimitra | Goff. 11048 | CONN, PC | KX512016 | KX512206 | KX512168 |
| CHL | Aneuraceae | 4 | 11 | 5 | 4 |  |  |  |  | Riccardia conimitra | VK6473 | PC | KX512017 | KX512207 | KX512169 |
| ECU | Aneuraceae | 5 | 1 | 6 | 5 |  |  |  |  | Riccardia sp. | SV31861 | PC | KX512018 | KX512208 | KX512105 |
| FRA | Aneuraceae | 6 | 17 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | AU9728 | PC | KX512019 | KX512209 | KX512178 |
| FRA | Aneuraceae | 6 | 17 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | VH2060 | PC | KX512020 | KX512210 | KX512179 |
| FRA | Aneuraceae | 6 | 17 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | VH3769 | PC | KX512021 | KX512211 | KX512177 |
| GLP | Aneuraceae | 7 | 18 | 8 | 7 |  |  |  |  | Riccardia stipatiflora | ELB1680 | PC | KX512022 | KX512212 | KX512191 |
| GLP | Aneuraceae | 7 | 18 | 8 | 7 |  |  |  |  | Riccardia stipatiflora | CR13G33 | PC | * | KX512213 | KX512190 |
| ECU | Aneuraceae | 8 | 5 | 9 | 8 |  |  |  |  | Riccardia ciliolata | SV31879 | ASV, PC | KX512024 | KX512214 | KX512126 |
| IDN | Aneuraceae | 9 | 7 | 10 | 9 |  |  |  |  | Riccardia sp20 | SRG12311 | PC | KX512025 | KX512215 | KX512147 |
| IDN | Aneuraceae | 9 | 7 | 10 | 9 |  |  |  |  | Riccardia sp20 | SRG12351 | PC | KX512026 | KX512216 | KX512149 |
| IDN | Aneuraceae | 9 | 7 | 10 | 9 |  |  |  |  | Riccardia sp20 | SRG12314 | PC | KX512027 | KX512217 | KX512148 |
| CHL | Aneuraceae | 10 | 6 | 11 | 10 | Y | Y |  | Y | Riccardia alcicornis | SHAW13448 | PC | KX512028 | KX512218 | KX512143 |
| CHL | Aneuraceae | 11 | 14 | 12 | 11 | Y | Y | Y | Y | Riccardia prehensilis | SHAW14070 | PC | KX512029 | KX512219 | KX512173 |
| NZL | Aneuraceae | 12 | 10 | 13 | 12 |  |  |  |  | Riccardia filicina | EVK26948 | AK, PC | KX512030 | KX512220 | KX512165 |
| NZL | Aneuraceae | 12 | 10 | 13 | 12 |  |  |  |  | Riccardia filicina | EVK26946 | AK, PC | KX512031 | KX512221 | KX512166 |
| MDG | Aneuraceae | 13 | 15 | 14 | 13 |  |  |  |  | Riccardia sp14 | CR13Z9 | PC | KX512032 | KX512222 | KX512174 |
| MDG | Aneuraceae | 13 | 15 | 15 | 13 |  |  |  |  | Riccardia sp14 | CR13Z13 | PC | KX512033 | KX512223 | KX512175 |
| FRA | Aneuraceae | 14 | 19 | 16 | 14 |  |  |  |  | Riccardia incurvata | VH1946 | PC | KX512034 | KX512224 | KX512195 |
| FRA | Aneuraceae | 14 | 19 | 16 | 14 |  |  |  |  | Riccardia incurvata | VH2457 | PC | KX512035 | KX512225 | KX512196 |


| Country | Family | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Taxon | Voucher number | Herbarium | GenBank accession number trnL-F | GenBank accession number rps 4 | $\begin{gathered} \text { GenBank } \\ \text { accession } \\ \text { number } \\ \text { psbA-trnH } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PYF | Aneuraceae | 15 | 20 | 17 | 15 | Y | Y | Y | Y | Riccardia graeffei | Kraichak767 | PC | KX512036 | KX512226 | KX512197 |
| MDG | Aneuraceae | 16 | 8 | 18 | 16 |  |  |  |  | Riccardia sp12 | CR13Z23 | PC | KX512037 | KX512227 | KX512151 |
| MDG | Aneuraceae | 16 | 8 | 18 | 16 |  |  |  |  | Riccardia sp13 | CRAE96 | PC | KX512038 | KX512228 | KX512152 |
| MDG | Aneuraceae | 22 | 23 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE44 | PC | KX512039 | KX512229 | KX512108 |
| MDG | Aneuraceae | 22 | 27 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE153 | PC | KX512040 | KX512230 | KX512113 |
| MDG | Aneuraceae | 22 | 29 | 19 | 32 |  |  |  |  | Riccardia longispica | EB6 | PC | KX512041 | KX512231 | KX512115 |
| MDG | Aneuraceae | 22 | 23 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE101 | PC | KX512042 | KX512232 | KX512106 |
| MDG | Aneuraceae | 22 | 23 | 19 | 32 |  |  |  |  | Riccardia longispica | PF2 | PC | KX512043 | KX512233 | KX512112 |
| REU | Aneuraceae | 22 | 23 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE88 | PC | KX512044 | KX512234 | KX512120 |
| MDG | Aneuraceae | 22 | 23 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE84 | PC | KX512045 | KX512235 | KX512107 |
| MDG | Aneuraceae | 22 | 26 | 19 | 32 |  |  |  |  | Riccardia sp1 | CR304 | PC | KX512046 | KX512236 | KX512111 |
| MDG | Aneuraceae | 22 | 30 | 19 | 32 |  |  |  |  | Riccardia sp8 | CRAE166 | PC | KX512047 | KX512237 | KX512116 |
| MDG | Aneuraceae | 22 | 28 | 19 | 32 |  |  |  |  | Riccardia sp8 | CRAE195 | PC | KX512048 | KX512238 | KX512114 |
| MDG | Aneuraceae | 22 | 32 | 19 | 32 |  |  |  |  | Riccardia longispica | CRAE151Ter | PC | KX512049 | KX512239 | KX512119 |
| GLP | Aneuraceae | 23 | 24 | 20 | 33 |  |  |  |  | Riccardia cataractarum | CR13G9 | PC | KX512050 | KX512240 | KX512117 |
| MTQ | Aneuraceae | 23 | 24 | 20 | 33 |  |  |  |  | Riccardia cataractarum | ELB1753 | PC | KX512051 | KX512241 | KX512109 |
| ECU | Aneuraceae | 24 | 25 | 21 | 34 |  |  |  |  | Riccardia amazonica | 31934SW | ASV, PC | KX512052 | KX512242 | KX512110 |
| GLP | Aneuraceae | 25 | 2 | 22 | 17 |  | Y | Y | Y | Riccardia cf. schwaneckei | ELB1599 | PC | KX512053 | KX512243 | KX512122 |
| MYS | Aneuraceae | 26 | 41 | 23 | 18 | Y |  |  |  | Riccardia elata | CYH143 | KLU, PC | KX512054 | KX512244 | KX512159 |
| IDN | Aneuraceae | 27 | 42 | 24 | 18 |  |  |  |  | Riccardia elata | SRG12341 | PC | KX512055 | KX512245 | KX512161 |
| IDN | Aneuraceae | 27 | 42 | 25 | 18 |  |  |  |  | Riccardia parvula | SRG12320 | PC | KX512056 | KX512246 | KX512160 |
| MYS | Aneuraceae | 28 | 41 | 26 | 18 |  |  |  |  | Riccardia elata | YKT7943 | KLU, PC | KX512057 | KX512247 | KX512163 |
| IDN | Aneuraceae | 28 | 41 | 26 | 18 |  |  |  |  | Riccardia elata | SRG12367 | PC | KX512058 | KX512248 | KX512162 |
| FRA | Aneuraceae | 29 | 39 | 27 | 19 |  |  |  |  | Riccardia multifida | VH1994 | PC | KX512059 | KX512249 | KX512164 |
| FRA | Aneuraceae | 29 | 39 | 27 | 19 |  |  |  |  | Riccardia multifida | VH934 | PC | KX512060 | KX512250 | KX512157 |
| FRA | Aneuraceae | 30 | 9 | 28 | 20 |  |  |  |  | Riccardia palmata | AU9880 | PC | KX512061 | KX512251 | KX512155 |
| FRA | Aneuraceae | 30 | 9 | 28 | 20 |  |  |  |  | Riccardia palmata | AU9877 | PC | KX512062 | KX512252 | KX512156 |
| FRA | Aneuraceae | 30 | 9 | 28 | 20 |  |  |  |  | Riccardia palmata | VH924 | PC | KX512063 | KX512253 | KX512153 |
| FRA | Aneuraceae | 30 | 9 | 28 | 20 |  |  |  |  | Riccardia palmata | VH2533 | PC | KX512064 | KX512254 | KX512154 |
| IDN | Aneuraceae | 31 | 12 | 29 | 21 | Y | Y | Y | Y | Riccardia heteroclada | BORH3430 | BORH, PC | KX512065 | KX512255 | KX512171 |


| Country | Family | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Taxon | Voucher number | Herbarium | GenBank accession number trnL-F | GenBank accession number rps 4 | GenBank accession number psbA-trnH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHL | Aneuraceae | 32 | 13 | 30 | 22 |  | Y |  | Y | Riccardia alcicornis | SHAW13056 | PC | KX512066 | KX512256 | KX512172 |
| CHN | Aneuraceae | 33 | 40 | 31 | 44 | Y | Y |  | Y | Riccardia cf. aeruginosa | SRG12381 | HSNU, PC | KX512067 | KX512257 | KX512158 |
| NZL | Aneuraceae | 34 | 16 | 32 | 23 | Y | Y | Y | Y | Riccardia eriocaula | EVK24188 | PC | KX512068 | KX512258 | KX512176 |
| CHL | Aneuraceae | 35 | 21 | 33 | 24 |  | Y | Y | Y | Riccardia alcicornis | VK6404 | PC | KX512069 | KX512259 | * |
| GLP | Aneuraceae | 36 | 18 | 34 | 7 |  |  |  |  | Riccardia stipatiflora | ELB1600 | PC | KX512070 | KX512260 | KX512192 |
| GLP | Aneuraceae | 37 | 44 | 35 | 7 |  |  |  |  | Riccardia stipatiflora | ELB1730 | PC | KX512071 | KX512261 | KX512194 |
| GLP | Aneuraceae | 37 | 44 | 35 | 7 |  |  |  |  | Riccardia stipatiflora | ELB1601b | PC | KX512072 | KX512262 | KX512193 |
| ECU | Aneuraceae | 38 | 5 | 36 | 36 |  |  |  |  | Riccardia pallida | SV32024 | ASV, PC | KX512073 | KX512263 | * |
| ECU | Aneuraceae | 38 | 37 | 36 | 36 |  |  |  |  | Riccardia pallida | SV32071 | ASV, PC | KX512074 | KX512264 | KX512135 |
| ECU | Aneuraceae | 39 | 36 | 37 | 37 |  |  |  |  | Riccardia parasitans | SV32160 | ASV, PC | KX512075 | KX512265 | KX512142 |
| ECU | Aneuraceae | 39 | 35 | 37 | 37 |  |  |  |  | Riccardia parasitans | MB6654 | PC | KX512076 | KX512266 | KX512130 |
| ECU | Aneuraceae | 39 | 35 | 37 | 37 |  |  |  |  | Riccardia parasitans | MB6673 | PC | KX512077 | KX512267 | KX512141 |
| GLP | Aneuraceae | 40 | 34 | 38 | 38 |  |  |  |  | Riccardia fucoidea | ELB1620 | PC | KX512078 | KX512268 | KX512133 |
| GLP | Aneuraceae | 40 | 34 | 39 | 38 |  |  |  |  | Riccardia fucoidea | ELB1601a | PC | KX512079 | KX512269 | KX512134 |
| BES | Aneuraceae | 40 | 34 | 38 | 38 |  |  |  |  | Riccardia fucoidea | WB51391 | PC | KX512080 | KX512270 | KX512129 |
| GLP | Aneuraceae | 40 | 34 | 38 | 38 |  |  |  |  | Riccardia fucoidea | CR13G29 | PC | KX512081 | KX512271 | KX512137 |
| MTQ | Aneuraceae | 40 | 34 | 38 | 38 |  |  |  |  | Riccardia fucoidea | ELB1757 | PC | KX512082 | KX512272 | KX512139 |
| MTQ | Aneuraceae | 40 | 34 | 65 | 38 |  |  |  |  | Riccardia fucoidea | ELB1767 | PC | KX512083 | KX512273 | KX512128 |
| ECU | Aneuraceae | 41 | 5 | 40 | 39 |  |  |  |  | Riccardia hans-meyeri | SV31767 | ASV, PC | KX512084 | KX512274 | KX512131 |
| ECU | Aneuraceae | 42 | 38 | 41 | 40 |  |  |  |  | Riccardia parasitans | SV32192 | ASV, PC | KX512085 | KX512275 | KX512132 |
| ECU | Aneuraceae | 43 | 5 | 42 | 41 |  |  |  |  | Riccardia plumiformis | SV31760 | ASV, PC | KX512086 | KX512276 | KX512167 |
| ECU | Aneuraceae | 43 | 5 | 42 | 41 |  |  |  |  | Riccardia plumiformis | MB7011 | PC | KX512087 | KX512277 | KX512136 |
| GLP | Aneuraceae | 44 | 34 | 43 | 42 |  |  |  |  | Riccardia sprucei | ELB1162 | PC | KX512088 | KX512278 | KX512138 |
| ECU | Aneuraceae | 45 | 5 | 44 | 43 |  |  |  |  | Riccardia smaragdina | SV32161 | ASV, PC | KX512089 | KX512279 | KX512140 |
| IDN | Aneuraceae | 46 | 7 | 45 | 9 |  |  |  |  | Riccardia diminuta | SRG12363 | PC | KX512090 | KX512280 | KX512144 |
| IDN | Aneuraceae | 47 | 7 | 46 | 9 |  |  |  |  | Riccardia crenulata | SRG12310 | PC | KX512091 | KX512281 | KX512145 |
| CHN | Aneuraceae | 48 | 7 | 47 | 9 |  |  |  |  | Riccardia aeruginosa | Zhu. S. n. | HSNU, PC | KX512092 | KX512282 | KX512146 |
| NCL | Aneuraceae | 49 | 7 | 48 | 9 |  |  |  |  | Riccardia cf. nagasakiensis | LT12102601b | PC | KX512093 | KX512283 | KX512150 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | $05 / 339-\mathrm{Hb}$ | E | KX512094 | KX512284 | KX512186 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | Wigg 05/168A | E | KX512095 | KX512285 | KX512182 |


| Country | Family | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | Taxon | Voucher number | Herbarium | GenBank accession number trnL-F | GenBank accession number rps 4 | GenBank accession number psbA-trnH |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430505 | E | KX512096 | KX512286 | KX512183 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430507 | E | KX512097 | KX512287 | KX512189 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430526 | E | KX512098 | KX512288 | KX512185 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430518 | E | KX512099 | KX512289 | KX512180 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430517 | E | KX512100 | KX512290 | KX512188 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430510 | E | KX512101 | KX512291 | KX512187 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | E00430513 | E | KX512102 | KX512292 | KX512181 |
| SHN | Aneuraceae | 51 | 43 | 7 | 6 |  |  |  |  | Riccardia chamedryfolia | $05 / 383-\mathrm{Hb}$ | E | KX512103 | KX512293 | KX512184 |
| MTQ | Aneuraceae | 52 | 33 | 19 | 32 |  |  |  |  | Riccardia sp. | ELB1747 | E | KX512104 | KX512294 | KX512121 |
| GLP | Aneuraceae | 53 | 31 | 49 | 35 |  |  |  |  | Riccardia regnellii | CR13G4 | PC | KX512023 | KX512295 | KX512118 |
| MDG | Aneuraceae | 1 | 22 | 1 | 1 | Y |  |  |  | Afroriccardia comosa | CR13Z28 | PC | KX512011 | KX512201 | KX512200 |
| UGA | Aneuraceae | - | 22 | 1 | 1 |  |  |  |  | Afroriccardia comosa | U5039a | E | KX512008 | - | KX512127 |
| MDG | Aneuraceae | - | 22 | 1 | 1 |  |  |  |  | Afroriccardia comosa | CR11188 | PC | KX512009 | - | KX512199 |
| MDG | Aneuraceae | - | 22 | 1 | 1 |  |  |  |  | Afroriccardia comosa | CR13Z55 | PC | KX512010 | - | KX512198 |
| REU | Aneuraceae | 17 | - | 50 | 25 |  |  |  |  | Aneura latissima | ASV19811 | ASV | FM210482.1 | FM210626 | - |
| GBR | Aneuraceae | 17 | - | 51 | 26 | Y |  |  | Y | Aneura mirabilis | Wickett 276 | CONN | FM210481.1 | DQ983846 | - |
| DOM | Aneuraceae | 17 | - | 52 | 25 |  |  |  |  | Aneura pinguis | ASV17946 | STU | FM210488.1 | FM210632 | - |
| NZL | Aneuraceae | 19 | - | 54 | 28 |  |  |  |  | Lobatiriccardia alterniloba | CHR559609 | CHR | FM210493.1 | FM210637 | - |
| - | Aneuraceae | 19 | - | 56 | 28 |  |  |  |  | Lobatiriccardia oberwinkleri | ASV13020 | ASV | FM210495.1 | FM210639.1 | - |
| AUS | Aneuraceae | 19 | - | 57 | 28 |  |  |  |  | Lobatiriccardia spec. A1 | ASV18302 | ASV | FM210498.1 | FM210642 | - |
| NZL | Aneuraceae | 19 | - | 58 | 28 |  |  |  |  | Lobatiriccardia spec. B2 | CHR542478 | CHR | FM210502.1 | FM210645 | - |
| ECU | Aneuraceae | 19 | - | 56 | 28 |  |  |  |  | Lobatiriccardia verdoornioides | ASV24457 | ASV | FM210503.1 | FM210646 | - |
| MYS | Aneuraceae | 50 | - | 55 | 28 |  |  |  |  | Lobatiriccardia coronopus | ASV18641 | ASV | FM210494.1 | FM210638 | - |
| JPN | Aneuraceae | 50 | - | 59 | 28 |  |  |  |  | Lobatiriccardia yakusimensis | Yamaguchi 23870 | ASV | FM210506.1 | FM210649 | - |
| NZL | Aneuraceae | 21 | - | 64 | 31 | Y |  | Y | Y | Verdoornia succulenta | CHR527380 | CHR | FM210522.1 | FM210663 | - |
| ITA | Metzgeriaceae | 18 | - | 53 | 27 |  |  |  |  | Apometzgeria pubescens | MN061105 | STU | FM210491.1 | FM210635 | - |
| ITA | Metzgeriaceae | 18 | - | 60 | 27 |  |  |  |  | Metzgeria furcata | MN061106 | STU | FM210507.1 | FM210650 | - |
| USA | Metzgeriaceae | 18 | - | 61 | 27 |  |  |  |  | Metzgeria myriopoda | Goffinet 5227 | CONN | FM210508.1 | DQ979339 | - |
| PNG | Pleuroziaceae | 20 | - | 62 | 29 | Y |  | Y | Y | Pleurozia gigantea | De Sloover 42824 | H | AY463582.1 | AY462386 | - |
| ECU | Pleuroziaceae | 20 | - | 63 | 30 | Y |  | Y | Y | Pleurozia paradoxa | MPE02211 | STU | FM210509.1 | FM210651 | - |

