A review of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) species from eastern Australia with the description of three new species
Abstract
Australia is predicted to have a high number of currently undescribed ostracod taxa. The genus Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) occurs in Australia and New Zealand, and has recently shown potential for high speciosity, after the description of nine new species from Western Australia. Here, we focus on Bennelongia from eastern Australia, with the objectives of exploring likely habitats for undiscovered species, genetically characterising published morphological species and scanning classical species for cryptic diversity. Two traditional (morphological) species are confirmed to be valid using molecular evidence (B. harpago De Deckker & McKenzie, 1981 and B. pinpi De Deckker, 1981), while three new species are described using both morphological and molecular evidence. Two of the new species belong to the B. barangaroo lineage (B. dedeckkeri sp. nov. and B. mckenziei sp. nov.), while the third is a member of the B. nimala lineage (B. regina sp. nov.). Another species was found to be genetically distinct, but is not formally described here owing to a lack of distinguishing morphological features from the existing species B. cuensis Martens et al., 2012. Trends in diversity and radiation of the genus are discussed, as well as implications these results have for the conservation of temporary pool microfauna and our understanding of Bennelongia’s evolutionary origin.
References
Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410. http://dx.doi.org/10.1006/jmbi.1990.9999
Beheregaray L. & Caccone A. 2007. Cryptic biodiversity in a changing world. Journal of Biology 6: 1-5. http://dx.doi.org/10.1186/jbiol60
Birky C.W., Adams J., Gemmel M. & Perry J. 2010. Using population genetic theory and DNA sequences for species detection and identification in asexual organisms. PLOS ONE 5 (5): e10609. http://dx.doi.org/10.1371/journal.pone.0010609
Birky C.W. & Barraclough T.G. 2009. Asexual Speciation. In: Schön I., Martens K. & van Dijk P. (eds), Lost Sex, The Evolutionary Biology of Parthenogenesis: 201-216. Springer: Dordrecht, Heidelberg, London, New York.
Bode S.N.S., Adolfsson S., Lamatsch D.K., Martins M.J.F., Schmit O., Vandekerkhove J., Mezquita F., Namiotko T., Rossetti G., Schön I., Butlin R.K. & Martens K. 2010. Exceptional cryptic diversity and multiple origins of parthenogenesis in a freshwater ostracod. Molecular Phylogenetics and Evolution 54: 542–552. http://dx.doi.org/10.1016/j.ympev.2009.08.022
Brown D., Brenneman R., Koepfli K.-P., Pollinger J., Mila B., Georgiadis N., Louis E., Grether G., Jacobs D. & Wayne R. 2007. Extensive population genetic structure in the giraffe. BMC Biology 5: 57. http://dx.doi.org/10.1186/1741-7007-5-57
Clement M., Posada D. & Crandall K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657-1659. http://dx.doi.org/10.1046/j.1365-294x.2000.01020.x
Cook B.D., Baker A.M., Page T.J., Grant S.C., Fawcett J.H., Hurwood D.A. & Hughes J.M. 2006. Biogeographic history of an Australian freshwater shrimp, Paratya australiensis (Atyidae): the role life history transition in phylogeographic diversification. Molecular Ecology 15: 1083-1093. http://dx.doi.org/10.1111/j.1365-294X.2006.02852.x
De Deckker P. 1981. Taxonomy and ecological notes of some ostracods from Australian inland waters. Transactions of the Royal Society of South Australia 105: 91 - 138.
De Deckker P. 1982. On Bennelongia tunta De Deckker. A Stereo Atlas of Ostracod Shells 9: 117-124.
De Deckker P. & McKenzie K.G. 1981. Bennelongia, a new Cypridid ostracod genus from Australasia. Transactions of the Royal Society of South Australia 105: 53-58.
Elmer K., Davila J. & Lougheed S. 2007. Cryptic diversity and deep divergence in an upper Amazonian leaflitter frog, Eleutherodactylus ockendeni. BMC Evolutionary Biology 7: 247. http://dx.doi.org/10.1186/1471-2148-7-247
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplication of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294-299.
Fontaneto D., Boschetti C. & Ricci C. 2008. Cryptic diversification in ancient asexuals: evidence from the bdelloid rotifer Philodina flaviceps. Journal of Evolutionary Biology 21: 580-587. http://dx.doi.org/10.1111/j.1420-9101.2007.01472.x
Geospiza Inc. (n.d.). FinchTV (Version 1.4.0). Seattle, WA, USA.
Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696-704. http://dx.doi.org/10.1080/10635150390235520
Gustafsson D.R., Price D.A. & Erseus C. 2009. Genetic variation in the popular lab worm Lumbriculus variegatus (Annelida:Clitellata: Lumbriculidae) reveals cryptic speciation. Molecular Phylogenetics and Evolution 51: 182-189. http://dx.doi.org/10.1016/j.ympev.2008.12.016
Hart M.W. & Sunday J. 2007. Things fall apart: biological species form unconnected parsimony networks. Biological Letters 3: 509-512. http://dx.doi.org/10.1098/rsbl.2007.0307
Hasegawa M., Kishino H. & Yano T. 1985. Dating the human-ape split by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22: 160-174. http://dx.doi.org/10.1007/BF02101694
Horne D.J. & Colin J. P. 2005. The affinities of the ostracod genus Cypridea Bosquet, 1852, and its allies, with consideration of implications for the phylogeny of non-marine cypridoidean ostracods. Revue de Micropaléontologie 48: 25-35. http://dx.doi.org/10.1016/j.revmic.2004.12.003
Horne D.J. & Martens K. 1998. An assessment of the importance of resting eggs for the evolutionary success of non-marine Ostracoda (Crustacea). In: Brendonck L., Meester L.D. & Hairston N. (eds), Evolutionary and ecological aspects of crustacean diapause. Advances in Limnology: 549-561.
Huelsenbeck J.P. & Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. http://dx.doi.org/10.1093/bioinformatics/17.8.754
Karanovic I. 2007. Candoninae (Ostracoda) from the Pilbara region in Western Australia. Crustaceana Monographs 7: 432. http://dx.doi.org/10.1163/ej.9789004156937.i-434
Karanovic T. 2004. Subterranean Copepoda from arid Western Australia. Brill, Leiden.
Kimball S., Mattis P. & Team G.D. (1995). GIMP (GNU Image Manipulation Software), (Version 2.6.11). Free Software Foundation Inc, Boston, MA.
Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences, U.S.A. 78: 454-458. http://dx.doi.org/10.1073/pnas.78.1.454
Koenders A., Martens K., Halse S. & Schön I. 2012. Cryptic species of the Eucypris virens species complex (Ostracoda, Crustacea) from Europe have invaded Western Australia. Biological Invasions 14: 2187-2201. http://dx.doi.org/10.1007/s10530-012-0224-y
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948. http://dx.doi.org/10.1093/bioinformatics/btm404
Marrone F., Lo Brutto S. & Arculeo M. 2010. Molecular evidence for the presence of cryptic evolutionary lineages in the freshwater copepod genus Hemidiaptomus G.O. Sars, 1903 (Calanoida, Diaptomidae). Hydrobiologia 644: 115-125. http://dx.doi.org/10.1007/s10750-010-0101-6
Martens K., Halse S. & Schön I. 2012. Nine new species of Bennelongia De Deckker & McKenzie, 1981 (Crustacea, Ostracoda) from Western Australia, with the description of a new subfamily. European Journal of Taxonomy 8: 1-56. http://dx.doi.org/10.5852/ejt.2012.8
Martens K., Schön I., Meisch C. & Horne D. 2008. Global diversity of ostracods (Ostracoda, Crustacea) in freshwater. Hydrobiologia 595: 185-193. http://dx.doi.org/10.1007/s10750-007-9245-4
Murphy N.P., Adams M. & Austin A.D. 2009. Independent colonization and extensive cryptic speciation of freshwater amphipods in the isolated groundwater springs of Australia’s Great Artesian Basin. Molecular Ecology 18: 109-122. http://dx.doi.org/10.1111/j.1365-294X.2008.04007.x
Pfenninger M. & Schwenk K. 2007. Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology 7: 1-6. http://dx.doi.org/10.1186/1471-2148-7-121
Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253-1256. http://dx.doi.org/10.1093/molbev/msn083
Schön I., Pinto R.L., Halse S., Smith A.J., Martens K. & Birky C.W.jr. 2012. Cryptic species in putative ancient asexual darwinulids (Crustacea, Ostracoda). PLOS ONE 7: e39844. http://dx.doi.org/10.1371/journal.pone.0039844
Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739. http://dx.doi.org/10.1093/molbev/msr121
Timms B.V. 2012. An appraisal of the diversity and distribution of large branchiopods (Branchiopoda: Anostraca, Laevicaudata, Spinicaudata, Cyclestherida, Notostraca) in Australia. Journal of Crustacean Biology 32: 615-623. http://dx.doi.org/10.1163/193724012X634198
Timms B.V. & Sanders P.R. 2002. Biogeography and ecology of Anostraca (Crustacea) in middle Paroo catchment of the Australian arid-zone. Hydrobiologia 486: 225-238. http://dx.doi.org/10.1023/A:1021363104870
Väinölä R., Witt J., Grabowski M., Bradbury J., Jazdzewski K. & Sket B. 2008. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241-255. http://dx.doi.org/10.1007/s10750-007-9020-6
Witt J.D.S., Threloff D.L. & Hebert P.D.N. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073-3082. http://dx.doi.org/10.1111/j.1365-294X.2006.02999.x
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.