Taming an ichnotaxonomical Pandora's box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae)

  • Max Wisshak Senckenberg am Meer, Marine Research Department, 26382 Wilhelmshaven
Keywords: bioerosion, trace fossils, microborings, dendrinids, Dendrinidae, ichnotaxonomy

Abstract

Dendritic and/or rosetted microborings in calcareous and osteic skeletal substrates have a diverse trace fossil record, spanning most of the Phanerozoic, whereas the ichnodiversity of comparable bioerosion traces produced in modern seas is rather limited. The most prominent occurrences are known from Devonian brachiopods and from Upper Cretaceous belemnite rostra. Ichnotaxonomically, they are comprised within one of the few ichnofamilies established to date, the Dendrinidae Bromley et al., 2007. As an outcome of the present revision of this ichnofamily, the plethora of 84 ichnospecies established within 25 ichnogenera since the erection of the type ichnogenus Dendrina Quenstedt, 1849 was considerably condensed to 22 ichnospecies included in 7 ichnogenera, based on a coherent morphological categorisation and ichnotaxobasis assessment. The suite of ichnogenera now subsumed within the Dendrinidae includes Dendrina Quenstedt, 1849; Clionolithes Clarke, 1908; Calcideletrix Mägdefrau, 1937; Dictyoporus Mägdefrau, 1937; Abeliella Mägdefrau, 1937; Nododendrina Vogel et al., 1987; and Pyrodendrina Tapanila, 2008. New combinations thereby concern Dendrina dendrina (Morris, 1851) comb. nov., Clionolithes pannosus (Solle, 1938) comb. nov., C. alcicornis (Vogel et al., 1987) comb. nov., C. convexus (Hofmann, 1996) comb. nov., Calcideletrix anomala (Mägdefrau, 1937) comb. nov., C. fastigata (Radtke, 1991) comb. nov., Dictyoporus balani (Tavernier et al., 1992) comb. nov., Nododendrina europaea (Fischer, 1875) comb. nov., N. incomposita (Mägdefrau, 1937) comb. nov. and N. paleodendrica (Elias, 1957) comb. nov. Investigation of new material and a reassessment of 63 dendrinid microborings previously addressed in informal nomenclature allowed the establishment of two complementing ichnogenera, Rhopalondendrina igen. nov. and Antodendrina igen. nov., and eight new ichnospecies, comprising Pyrodendrina arctica isp. nov., P. belua isp. nov., P. villosa isp. nov., Rhopalondendrina avis igen. et isp. nov., R. acanthina igen. et isp. nov., R. contra igen. et isp. nov., R. tigris igen. et isp. nov. and Antodendrina ligula igen. et isp. nov. In densely bioeroded calcareous substrates, different dendrinids and other bioerosion traces may be found in direct contact with each other, forming composite trace fossils, but some of these associations appear rather systematic in nature and could be the work of the same tracemaker under different behavioural modes, thus forming compound trace fossils. In these cases, however, the distinction between the two concepts remains largely equivocal. Dendrinid microborings are primarily found in living and dead calcareous skeletal substrates of bivalves, brachiopods, belemnites and corals, with complementing records from six other substrate types. Facing considerable sampling artefacts, evidence for true substrate specificity or symbiotic relationships is inconclusive as yet, whereas there is direct evidence for post-mortem infestation in several cases, such as the diverse dendrinid associations in Upper Cretaceous belemnite guards. Despite a wealth of available interpretations, the actual biological identity of the dendrinids’ tracemakers remains largely speculative. The most convincing evidence has been put forward in support of foraminiferans as the producers of Nododendrina, and excavating micro-sponges producing Clionolithes and some Calcideletrix. Since most of the dendrinids are found in aphotic (palaeo-)environments, these two principal types of organotrophic tracemakers are also potential candidates for the other ichnogenera. With regards to evolutionary patterns through geologic time, strong adaptive radiations are evident from the ichnodiversity of dendrinid ichnospecies in the Early to Mid-Palaeozoic, reflecting the “Ordovician Bioerosion Revolution” (sensu Wilson & Palmer 2006) and the “Mid-Palaeozoic Precursor of the Mesozoic Marine Revolution” (sensu Signor & Brett 1984), respectively, and in the Mesozoic, coinciding with the prominent “Marine Mesozoic Revolution” (sensu Vermeij 1977). This pattern mimics that of other micro- and macro-bioerosion trace fossils and is interpreted as a reflection of increased predation pressure and consequent infaunalisation. For extinction events, in turn, a differential effect is recorded in that the first four of the “Big Five” mass extinctions appear not to have had any noticeable effect on dendrinid ichnodiversity, whereas the end-Cretaceous mass-extinction resulted in a 77% drop following the Cretaceous peak ichnodiversity of 13 dendrinid ichnospecies.

References

Bernard-Dumanois A. & Delance J.-H. 1983. Microperforations par algues et champignons sur les coquilles des “Marnes à Ostrea acuminata” (Bajocien supérieur) de Bourgogne (France), relations avec le milieu et utilisation paléobathymétrique. Geobios 16: 419–429. https://doi.org/10.1016/S0016-6995(83)80102-8

Bertling M., Braddy S.J., Bromley R.G., Demathieu G.D., Genise J., Mikulás R., Nielsen J.K., Nielsen K.S.S., Rindsberg A.K., Schlirf M. & Uchman A. 2006. Names for trace fossils: a uniform approach. Lethaia 39: 265–286. https://doi.org/10.1080/00241160600787890

Beuck L. 2008. Framework-Building Cold-Water Coral Ecosystem Characterisation: Key Studies from Macro- to Micro-Scale. Unpublished Diploma Thesis. Friedrich-Alexander Universität, Erlangen- Nürnberg, Germany.

Beuck L. & Freiwald A. 2005. Bioerosion patterns in a deep-water Lophelia pertusa (Scleractinian) thicket (Propeller Mound, northern Porcupine Seabight). In: Freiwald A. & Roberts J.M. (eds) Cold- Water Corals and Ecosystems: 915–936. Springer, Heidelberg. https://doi.org/10.1007/3-540-27673-4_47

Beuck L., Freiwald A. & Taviani M. 2010. Spatiotemporal bioerosion patterns in deep-water scleractinians from off Santa Maria di Leuca (Apulia, Ionian Sea). Deep-Sea Research II 57: 458–470. https://doi.org/doi:10.1016/j.dsr2.2009.08.019

Blissett D.J. & Pickerill R.K. 2004. Observations on macroborings from the White Limestone Group of Jamaica. Cainozoic Research 3: 167–187.

Blissett D.J. & Pickerill R.K. 2007. Systematic ichnology of microborings from the Cenozoic White Limestone Group, Jamaica, West Indies. Scripta Geologica 134: 77–108.

Boekschoten G.J. 1966. Shell borings of sessile epibiontic organisms as palaeoecological guides (with examples from the Dutch coast). Palaeogeography, Palaeoclimatology, Palaeoecology 2: 333–379. https://doi.org/10.1016/0031-0182(66)90023-X

Botquelen A. & Mayoral E. 2005. Early Devonian bioerosion in the Rade de Brest, Armorican Massif, France. Palaeontology 48: 1057–1064. https://doi.org/10.1111/j.1475-4983.2005.00492.x

Branson C.C. 1937. Stratigraphy and fauna of the Sacajawea Formation, Mississippian, of Wyoming. Journal of Paleontology 11: 650–660.

Breton G., Wisshak M., Néraudeau D. & Morel N. 2017. Parasitic gastropod bioerosion trace fossil on Cenomanian oysters from Le Mans, France and its ichnologic and taphonomic context. Acta Palaeontologica Polonica 62: 45–57. https://doi.org/10.4202/app.00304.2016

Bromley R.G. 2004. A stratigraphy of marine bioerosion. In: McIlroy D. (ed.) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: 455–481. Geological Society Special Publications 228. Geological Society, London.

Bromley R.G. 2005. Preliminary study of bioerosion in the deep-water coral Lophelia, Pleistocene, Rhodes, Greece. In: Freiwald A. & Roberts J.M. (eds) Cold-Water Corals and Ecosystems: 895–914. Springer, Heidelberg. https://doi.org/10.1007/3-540-27673-4_46

Bromley R.G. & D‘Alessandro A. 1984. The ichnogenus Entobia from the Miocene, Pliocene and Pleistocene of southern Italy. Rivista Italiana de Paleontologia e Stratigrafia 90: 227–296.

Bromley R.G. & Nielsen K.S.S. 2015. Bioerosional ichnotaxa and the fossilization barrier. Annales Societatis Geologorum Poloniae 85: 453–455. https://doi.org/10.14241/asgp.2015.033

Bromley R.G. & Surlyk F. 1973. Borings produced by brachiopod pedicles, fossil and Recent. Lethaia 6: 349–365. https://doi.org/10.1111/j.1502-3931.1973.tb01203.x

Bromley R.G., Wisshak M., Glaub I. & Botquelen A. 2007. Ichnotaxonomic review of dendriniform borings attributed to foraminiferans: Semidendrina igen. nov. In: Miller III W. (ed.) Trace Fossils: Concepts, Problems, Prospects: 518–530. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044452949-7/50158-3

Buatois L.A. & Mángano M.G. 2016. Recurrent patterns and processes: The significance of ichnology in evolutionary paleoecology. In: Mángano M.G. & Buatois L.A. (eds) The Trace-Fossil Record of Major Evolutionary Events, Vol 2: 449–473, Topics in Geobiology 40. Springer, Heidelberg.

Buatois L.A., Wisshak M., Wilson M.A. & Mángano M.G. 2017. Categories of architectural designs in trace fossils: A measure of ichnodisparity. Earth Science Reviews 164: 102–181. https://doi.org/10.1016/j.earscirev.2016.08.009

Bublichenko N.L. 1958. Some new representatives of Devonian and Carboniferous brachiopods from Rudno-Alta and Sary-Arka. Izvestiya Akademii Nauk Kazakhskoi SSR 1956, Seriya Geologicheskaya 23: 93–104.

Budd D.A. & Perkins R.D. 1980. Bathymetric zonation and paleoecological significance of microborings in Puerto Rican shelf and slope sediments. Journal of Sedimentary Petrology 50: 881–904.

Bundschuh M. 2000. Silurische Mikrobohrspuren: Ihre Beschreibung und Verteilung in verschiedenen Faziesräumen (Schweden, Litauen, Großbritannien und USA). Unpublished PhD Thesis. Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany.

Cherchi A. & Schroeder R. 1991. Perforations branchues dues à des Foraminifères cryptobiotiques dans des coquilles actuelles et fossiles. Comptes rendus de l’Académie des Sciences 312: 111–115.

Clarke J.M. 1908. The beginnings of dependent life. New York State Museum Bulletin 121: 146–169.

Clarke J.M. 1921. Organic dependence and disease, their origin and significance. New York State Museum Bulletin 221–222: 1–113.

Dacqué E. 1921. Vergleichende biologische Formenkunde der fossilen niederen Tiere. Borntraeger, Berlin.

Easton W.H. 1962. Carboniferous formations and faunas of central Montana. Geological Survey Professional Paper 348. United States Government Printing Office, Washington DC.

Edwards B.D. & Perkins R.D. 1974. Distribution of microborings within continental margin sediments of the southeastern United States. Journal of Sedimentary Petrology 44: 1122–1135.

Ekdale A.A. & Bromley R.G. 1984. Comparative ichnology of shelf-sea and deep-sea chalk. Journal of Paleontology 58: 322–332.

Elias M.K. 1957. Late Mississippian fauna from the Redoak Hollow Formation of southern Oklahoma, part I. Journal of Paleontology 31: 370–427.

Elias R.J. 1980. Borings in solitary rugose corals of the Selkirk Member, Red River Formation (late Middle or Upper Ordovician), southern Manitoba. Canadian Journal of Earth Sciences 17: 272–277. https://doi.org/10.1139/e80-023

Elsik W.C. 1966. Biologic degradation of fossil pollen grains and spores. Micropaleontology 12: 515– 518.

Elsik W.C. 1971. Microbiological degradation of sporopollenin. In: Brooks J. et al. (eds) Sporopollenin: 480–511. Academic Press, London.

Esmerode E.V., Lykke-Andersen H. & Surlyk F. 2007. Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: contourites in an epeiric sea. Geological Society, London, Special Publications 276: 265–282.

Étallon A. 1859a. Études paléontologiques sur le Haut-Jura: rayonnés du corallien. Mémoires de la Société d’Émulation du Départment du Doubs, Série 3 3: 401–553.

Étallon A. 1859b. Sur la classification des spongiaires du Haut-Jura et leur distribution dans les étages. Actes de la Société Jurassienne d’Émulation 9: 129–160.

Étallon A. 1862. Études paléontologiques sur la Haut-Jura. Monographie du corallien. Vertébrés, articulés, mollusques (Séances des 8 janvier et 12 mars 1859). Mémoires de la Societé d’Emulation du Département de Doubs, Série 3 6: 53–260.

Étallon A. 1864. Études paléontologiques sur le Jura graylois: terrains jurassiques moyen et supérieur. Mémoires de la Societé d’Emulation du Département de Doubs, Série 3 8: 221–506.

Färber C., Wisshak M., Pyko I., Bellou N. & Freiwald A. 2015. Effects of water depth, seasonal exposure, and substrate orientation on microbial bioerosion in the Ionian Sea (Eastern Mediterranean). PLoS One 10: e0126495. https://doi.org/10.1371/journal.pone.0126495

Fenton C.L. & Fenton M.A. 1932. Boring sponges in the Devonian of Iowa. American Midland Naturalist 13: 42–54.

Fischer M.P. 1875. D’un type de sarcodaires. Journal de Zoologie 4: 530–533.

Fischer M.P. 1876. On the presence in existing seas of a type of Sarcodaria of the secondary formations. The Annals and Magazine of Natural History 17: 103–104. https://doi.org/10.1080/00222937608681910

Försterra G., Beuck L., Häussermann V. & Freiwald A. 2005. Shallow-water Desmophyllum dianthus (Scleractinia) from Chile: characteristics of the biocoenoses, the bioeroding community, heterotrophic interactions and (paleo)-bathymetric implications. In: Freiwald A. & Roberts J.M. (eds) Cold-Water Corals and Ecosystems: 937–977. Springer, Heidelberg. https://doi.org/10.1007/3-540-27673-4_48

Fries E. 1832. Systema Mycologicum, Sistens Fungorum, Ordines, Genera et Species, huc usque Cognitas, quas ad Normam Methoi Naturalis, III. Sumtibus Ernesti Mauritii, Greifswald.

Fritsch A. 1908. Problematica Silurica. Reimund Gerhard, Prague.

Furlong C.M. & McRoberts C.A. 2014. Commensal borings from the Middle Devonian of central New York: Ecologic and taxonomic review of Clionoides, Clionolithes, and Canaliparva n. ichnogen. Journal of Paleontology 88: 130–144. https://doi.org/10.1666/12-141

Geinitz H.-B. 1849. Das Quadersandsteingebirge oder Kreidegebirge in Deutschland. Craz & Gerlach, Freiberg.

Ghare M.A. 1982. Borings on belemnoid rostra from Utatur Group of Upper Cretaceous rocks of Trichinopoly District, Tamil Nadu. Journal of the Geological Society of India 23: 129–135.

Girod P. & Rösner T. 2013. Spurenfossilien (Ichnofossilien). In: Arbeitskreis Paläontologie Hannover (eds) Fossilien aus dem Campan von Hannover: 280–288. Arbeitskreis Paläontologie Hannover, Hannover.

Glaub I. 1988. Mikrobohrspuren in verschiedenen Faziesbereichen des Oberjura Westeuropas (vorläufige Mitteilungen). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 177: 135–164.

Glaub I. 1994. Mikrobohrspuren in ausgewählten Ablagerungsräumen des europäischen Jura und der Unterkreide (Klassifikation und Palökologie). Courier Forschungsinstitut Senckenberg 174: 1–324.

Glaub I. 2004. Recent and sub-recent microborings from the upwelling area off Mauritania (West Africa) and their implications for palaeoecology. In: McIlroy D. (ed.) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis: 63–77. Geological Society, London, Special Publications 228.

Glaub I. & Schmidt H. 1994. Traces of endolithic microboring organisms in Triassic and Jurassic bioherms. Kaupia 4: 103–112.

Glaub I., Golubic S., Gektidis M., Radtke G. & Vogel K. 2007. Microborings and microbial endoliths: Geological implications. In: Miller III W. (ed.) Trace Fossils: Concepts, Problems, Prospects: 368–381. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044452949-7/50147-9

Goette A. 1916. Die Gattungen Podocoryne, Stylactis and Hydractinia. Zoologische Jahrbücher 39: 443–510.

Gravesen P. & Jakobsen S.L. 2011. Skrivekridtets Fossiler. Gyldendahl A/S, Copenhagen.

Günther A. 1990. Distribution and bathymetric zonation of shell-boring endoliths in recent reef and shelf environments: Cozumel, Yucatan (Mexico). Facies 22: 233–262.

Hagenow F. von 1840. Monographie der Rügen’schen Kreide-Versteinerungen, II. Abtheilung: Radiarien und Annulaten. Nebst Nachträgen zur ersten Abtheilung. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde 1840: 630–672.

Hancock A. 1849. On the excavating powers of certain sponges belonging to the genus Cliona; with descriptions of several new species, and an allied generic form. Annals and Magazine of Natural History, Series 2 3: 321–348. https://doi.org/10.1080/03745485909494773

Häntzschel W. 1962. Trace fossils and problematica. In: Moore R.C. (ed.) Treatise on Invertebrate Paleontology, Part W – Miscellanea: W177–245. University of Kansas Press, Lawrence.

Häntzschel W. 1975. Trace fossils and problematica. In: Moore R.C. (ed.) Treatise on Invertebrate Paleontology, Part W – Miscellanea, Supplement 1: W1–269. University of Kansas Press, Lawrence.

Higazi F. 1985. Kleinfaunen aus dem Oberjura des spanischen Keltiberikums mit spezieller Berücksichtigung der Paläoökologie. Arbeiten aus dem Institut für Geologie und Paläontologie der Universität Stuttgart, Neue Folge 82: 127–159.

Hillmer G. & Schulz M. 1973. Ableitung der Biologie und Ökologie eines Polychaeten der Oberkreide durch Analyse des Bohrganges Ramosulcichnus biforans (Gripp) nov. ichnogen. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 42: 5–24.

Hofmann K. 1996. Die mikro-endolithischen Spurenfossilien der borealen Oberkreide Nordwest- Europas und ihre Faziesbeziehungen. Geologisches Jahrbuch, Serie A 136: 1–151.

Hofmann K. & Vogel K. 1992. Endolithische Spurenfossilien in der Schreibkreide (Maastricht) von Rügen (Norddeutschland). Zeitschrift für Geologische Wissenschaften 20: 51–65.

Höpner S. & Bertling M. 2017. Holes in bones: ichnotaxonomy of bone borings. Ichnos. https://doi.org/10.1080/10420940.2017.1289937

Hoşgör I. & Košt’ák M. 2012. Occurrence of the Late Cretaceous belemnite Belemnitella in the Arabian Plate (Hakkari, SE Turkey) and its palaeogeographic significance. Cretaceous Research 37: 35–42. https://doi.org/10.1016/j.cretres.2012.02.014

Hyde J.E. 1953. Mississippian Formations of Central and Southern Ohio. Bulletin 51. Ohio Division of Geological Survey, Columbus.

ICZN (International Commission for Zoological Nomenclature) 1999. International Code of Zoological Nomenclature, adopted by the International Union of Biological Sciences, 4th edition. International Trust for Zoological Nomenclature, London.

Kaminski M.A. 2001. The new and reinstated genera of agglutinated foraminifera published between 1986 and 1996. In: Hart M.B., Kaminski M.A. & Smart C.W. (eds) Proceedings of the Fifth International Workshop on Agglutinated Foraminifera. Grzybowski Foundation Special Publication 7: 185–219.

Kennedy W. 1970. Trace fossils in the Chalk environment. In: Frey R.W. (ed.) The Study of Trace Fossils: 377–396. Springer, New York.

Klug C., Kröger B., Korn D., Rücklin M., Schemm-Gregory M., De Baets K. & Mapes R.H. 2008. Ecological change during the early Emsian (Devonian) in the Tafilalt (Morocco), the origin of the Ammonoidea, and the first African pyrgocystid edrioasteroids, machaerids and phyllocarids. Palaeontographica, Abteilung A 283: 83–176. https://doi.org/10.1127/pala/283/2008/83

Knaust D. 2012. Trace fossil systematics. In: Knaust D. & Bromley R.G. (eds) Trace Fossils as Indicators of Sedimentary Environments: 79–102. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-53813-0.00003-4

Kölliker A. von 1860. Über das ausgebreitete Vorkommen von pflanzlichen Parasiten in den Hartgebilden niederer Thiere. Zeitschrift für wissenschaftliche Zoologie 10: 215–232.

Košt’ák M. 2004. Short ichnofossil synopsis in Upper Cretaceous belemnite family Belemnitellidae from central and eastern Europe. In: Mikulas R. (ed.) Abstract Book, 4th international bioerosion workshop, Prague, August 30–September 3, 2004. Institute of Geology, Academy of Sciences of the Czech Republic, Prague.

Krause G., Meincke J. & Schwarz H.J. 1991. Scientific cruise reports of Arctic expeditions ARK VI/1-4 of RV “Polarstern” in 1989. Berichte zur Polarforschung 87: 1–110.

Kutscher M. 1972. Fossile Lebensspuren in der weißen Schreibkreide (Unter-Maastricht) der Insel Rügen. Aufschluß 23: 26–34.

Lees J.H. & Thomas A. 1918. The Ste. Genevieve Marls near Fort Dodge and their fauna. Proceedings of the Iowa Academy of Science 25: 599–616.

Lindström M. 1979. Probable sponge borings in Lower Ordovician limestone of Sweden. Geology 7: 152–155.

Loeblich A.R. & Tappan H. 1964. Sarcodina, chiefly “Thecamoebians” & Foraminiferida. In: Moore R.C. (ed) Treatise on Invertebrate Paleontology, Part C – Protista / Protoctista 2. University of Kansas Press, Lawrence.

Mägdefrau K. 1937. Lebensspuren fossiler “Bohr”–Organismen. Beiträge zur naturkundlichen Forschung in Südwestdeutschland 2: 54–67.

Marcinowski R. 1972. Belemnites of the genus Actinocamax Miller, 1823, from the Cenomanian of Poland. Acta Geologica Polonica 22: 247–256.

Mayoral E. 1988. Microperforaciones (Tallophyta) sobre Bivalvia del Plioceno del Bajo Guadalquivir. Importancia paleoecologica. Estudios Geologicos 44: 301–316.

Miller J.S. 1826. Observations on the genus Actinocamax. Transactions of the Geological Society of London, Second Series 2 2: 63–68. https://doi.org/10.1144/transgslb.2.1.63

Morris J. 1851. Palaeontological notes. Annals and Magazine of Natural History, Series 2 8: 85–90. https://doi.org/10.1080/03745486109494965

Müller J. 1851. Monographie der Petrefacten der Aachener Kreideformation. Henry & Cohen, Bonn.

Nadjin D.P. 1969. Morfologia i Paleobiologia Verkhnemelovykh Belemnitov. Moscow.

Nestler H. 1975. Die Fossilien der Rügener Schreibkreide. Die neue Brehm Bücherei 486. Ziemsen, Wittenberg Lutherstadt.

Palmer T.J. & Palmer C.D. 1977. Faunal distribution and colonization strategy in a Middle Ordovician hardground community. Lethaia 10: 179–199. https://doi.org/10.1111/j.1502-3931.1977.tb00608.x

Pereira S., Mocho P. & Lourenço J. 2009. Bioerosion on Megacardita jouanetti (Bivalvia) from the Miocene of Foz do Rego (Costa de Caparica, Portugal). Paleolusitana 1: 327–338.

Pictet F.J. 1857. Traité de Paléontologie ou Histoire naturelle des Animaux fossiles considérés dans leurs Rapports zoologiques et geologiques. Vol. 4. J.-B. Bailliére et Fils, London.

Plewes C.R. 1996. Ichnotaxonomic Studies of Jurassic Endoliths. Unpublished PhD Thesis. University of Wales, Aberystwyth, UK.

Plewes C.R., Palmer T. & Haynes J. 1993. A boring foraminiferan from the Upper Jurassic of England and Northern France. Journal of Micropalaeontology 12: 83–89. https://doi.org/10.1144/jm.12.1.83

Pokorný R. & Štofik M. 2016. Evidence of bioerosive structures in Quaternary glaciomarine sediments from southwestern Iceland. Ichnos. https://doi.org/10.1080/10420940.2016.1260567

Powers B.G. & Ausich W.I. 1990. Epizoan associations in a lower Mississippian paleocommunity (Borden Group, Indiana, USA). Historical Biology 4: 245–265.

Pugaczewska H. 1965. Les organismes sédentaires sur les rostres des bélemnites du Crétacé supérieur. Acta Palaeontologica Polonica 10: 73–95.

Pugaczewska H. 1970. Traces of the activity of bottom organisms on the shells of the Jurassic ostreiform pelecypods of Poland. Acta Palaeontologica Polonica 15: 425–440.

Quenstedt F.A. 1849. Petrefaktenkunde Deutschlands – Die Cephalopoden. Ludwig Friedrich Fues, Tübingen, Germany.

Quenstedt F.A. 1885 Handbuch der Petrefaktenkunde. Verlag der H. Laupp’schen Buchhandlung, Tübingen.

Radtke G. 1991. Die mikroendolithischen Spurenfossilien im Alt-Tertiär West-Europas und ihre palökologische Bedeutung. Courier Forschungsinstitut Senckenberg 138: 1–185.

Radtke G. 1993. The distribution of microborings in molluscan shells from recent reef environments at Lee Stocking Island, Bahamas. Facies 29: 81–92. https://doi.org/10.1007/BF02536921

Radtke G., Glaub I., Vogel K. & Golubic S. 2010. A new dichotomous microboring: Abeliella bellafurca isp. nov., distribution, variability and biological origin. Ichnos 17: 25–33. https://doi.org/10.1080/10420940903358628

Radwański A. 1972. Remarks on the nature of belemnicolid borings Dendrina. Acta Geologica Polonica 22: 257–264.

Reich M. & Frenzel P. 2002. Die Fauna und Flora der Rügener Schreibkreide (Maastrichtium, Ostsee). Archiv für Geschiebekunde 3: 73–284.

Rooney W.S. & Perkins R.D. 1972. Distribution and geologic significance of microboring organisms within sediments of the Arlington Reef Complex, Australia. Geological Society of America Bulletin 83: 1139–1150. https://doi.org/10.1130/0016-7606(1972)83[1139:DAGSOM]2.0.CO;2

Rose C. 1855. On the discovery of parasitic borings in fossil fish scales. Transactions of the Microscopic Society of London, New Series 3: 7–12.

Rudolph F. 2014. “Nur” Donnerkeile. Der Geschiebesammler 47: 3–24.

Ruedemann R. 1925. The Utica and Lorraine Formations of New York. Part 2: systematic paleontology. New York State Museum Bulletin 262: 1–171.

Schmidt H. 1992. Mikrobohrspuren ausgewählter Faziesbereiche der tethyalen und germanischen Trias (Beschreibung, Vergleich und bathymetrische Interpretation). Frankfurter Geowissenschaftliche Arbeiten, Serie A 12: 1–228.

Schmidt H. & Freiwald A. 1993. Rezente gesteinsbohrende Kleinorganismen des norwegischen Schelfs. Natur und Museum 123: 149–155.

Schnick H. 1992. Zum Vorkommen der Bohrspur Hyellomorpha microdendritica Vogel, Golubic & Brett im oberen Obermaastricht Mittelpolens. Zeitschrift für Geologische Wissenschaften 20: 109–124.

Schulz W. 2003. Geologischer Führer für den norddeutschen Geschiebesammler. CW-Verlagsgruppe, Schwerin, Germany.

Seuss B., Wisshak M., Mapes R.H. & Landman N.H. 2015. Syn-vivo bioerosion of Nautilus by endo-and epilithic foraminiferans (New Caledonia and Vanuatu). PLoS One 10: e125558. https://doi.org/10.1371/journal.pone.0125558

Seward A.C. 1898. Fossil Plants: a Text-Book for Students of Botany and Geology. Cambridge University Press, Cambridge.

Signor P.W. & Brett C.E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Palaeobiology 10: 229–245.

Siverson M. 1993. Maastrichtian squaloid sharks from southern Sweden. Palaeontology 36: 1–19.

Solle G. 1938. Die ersten Bohr-Spongien im europäischen Devon und einige andere Spuren. Senckenbergiana Lethaea 20: 154–178.

Stiller F. 2005. An Early Jurassic Talpina-dominated assemblage of borings in bivalve shells from southern Hunan, China, with remarks on the ichnogenus Talpina Hagenow, 1840. Acta Palaeontologica Sinica 44: 396–411.

Talent J.A. 1963. The Devonian of the Mitchell and Wentworth Rivers. Geological Survey of Victoria, Memoir 24: 1–118.

Tapanila L. 2005. Palaeoecology and diversity of endosymbionts in Palaeozoic marine invertebrates: trace fossil evidence. Lethaia 38: 89–99. https://doi.org/10.1080/00241160510013123

Tapanila L. 2006. Devonian Entobia borings from Nevada, with a revision of Topsentopsis. Journal of Paleontology 80 (4): 760–767. https://doi.org/10.1666/0022-3360(2006)80[760:DEBFNW]2.0.CO;2

Tapanila L. 2008. The medium is the message: imaging a complex microboring (Pyrodendrina cupra igen. n., isp. n.) from the early Paleozoic of Anticosti Island, Canada. In: Wisshak M. & Tapanila L. (eds) Current Developments in Bioerosion: 123–145. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_7

Tavernier A. & Golubic S. 1993. Pliocene microboring assemblages in shells of the Purissima Formation (Capitola, California). Bollettino della Società Paleontologica Italiana, Special Volume 1: 405–414.

Tavernier A., Campbell S.E. & Golubic S. 1992. A complex marine shallow-water boring trace: Dendrorete balani n. ichnogen. et ichnospec. Lethaia 25: 303–310. https://doi.org/10.1111/j.1502-3931.1992.tb01399.x

Taylor P.D., Barnbrook J.A. & Sendino C. 2013. Endolithic biota of belemnites from the Early Cretaceous Speeton Clay Formation of North Yorkshire, UK. Proceedings of the Yorkshire Geological Society 59: 227–245. https://doi.org/10.1144/pygs2013-336

Teichert C. 1945. Parasitic worms in Permian brachiopod and pelecypod shells in Western Australia. American Journal of Science 243: 197–209.

Thomas A.O. 1911. A fossil burrowing sponge from the Iowa Devonian. Bulletin from the Laboratories of Natural History of the State University of Iowa 6: 165–169.

Thurmann J. & Étallon A. 1864. Lethea Bruntrutana ou études paléontologiques et stratigraphiques dur les terrains Jurassique supérieurs du Jura Bernois et en particulier des environs de Porrentruy. Nouveaux Mémoirs de la Société Helvetique des Sciences Naturelles 20: 355–500.

Thuy B., Kiel S., Dulai A., Gale A.S., Kroh A., Lord A.R., Numberger-Thuy L.D., Stöhr S. & Wisshak M. 2014. First glimpse into Lower Jurassic deep-sea biodiversity: in situ diversification and resilience against extinction. Proceedings of the Royal Society B 281: e20132624. https://doi.org/10.1098/rspb.2013.2624

Tiedt L. 1958. Die Nerineen der österreichischen Gosauschichten. Sitzungsberichte der Österreichischen Akademie der Wissenschaften 167: 483–517. https://doi.org/10.1007/978-3-662-26139-2

Titschack J., Joseph N., Fietzke J., Freiwald A. & Bromley R.G. 2013. Record of a tectonically-controlled regression captured by changes in carbonate skeletal associations on a structured island shelf (mid-Pleistocene, Rhodes, Greece). Sedimentary Geology 283: 15–33. https://doi.org/10.1016/j.sedgeo.2012.11.001

Underwood C.J., Mitchell S.F. & Veltkamp C.J. 1999. Microborings in mid-Cretaceous fish teeth. Proceedings of the Yorkshire Geological Society 52: 269–274. https://doi.org/10.1144/pygs.52.3.269

Vénec-Peyré T.-M. 1996. Bioeroding foraminifera: a review. Marine Micropaleontology 28: 19–30.

Verde M. 2002. Icnología de la Formación Camacho (Mioceno Tardío) del Uruguay. Unpublished MSc Thesis. Universidad de la República, Montevideo, Uruguay.

Vermeij G.J. 1977. The Mesozoic Marine Revolution: evidence from snails, predators and grazers. Paleobiology 3: 245–258.

Vogel K. 1987. Bohrorganismen und Fazies im Mitteldevon des Staates New York, USA. Natur und Museum 117: 207–216.

Vogel K. & Brett C.E. 2009. Record of microendoliths in different facies of the Upper Ordovician in the Cincinnati Arch region USA: The early history of light-related microendolithic zonation. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 1–24. https://doi.org/10.1016/j.palaeo.2009.06.032

Vogel K. & Glaub I. 2004. 450 Millionen Jahre Beständigkeit in der Evolution endolithischer Mikroorganismen? Sitzungsberichte der Wissenschaftlichen Gesellschaft an der Johann Wolfgang Goethe-Universität Frankfurt am Main 42: 1–42.

Vogel K. & Marincovich L. 2004. Paleobathymetric implications of microborings in Tertiary strata of Alaska, USA. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 1–20. https://doi.org/10.1016/j.palaeo.2003.12.017

Vogel K., Golubic S. & Brett C.E. 1987. Endolith associations and their relation to facies distribution in the Middle Devonian of New York State, USA. Lethaia 20: 263–290. https://doi.org/10.1111/j.1502-3931.1987.tb02047.x

Voigt E. 1929. Die Lithogenese der Flach- und Tiefwassersedimente des jüngeren Oberkreidemeeres, eine Parallelisierung orogenetisch bedingter Ablagerungsverhältnisse am Harzrand in Südschweden und im preussisch-holländischen Grenzgebiet. Jahrbuch des Halleschen Verbandes für die Erforschung der mitteldeutschen Bodenschätze und ihrer Verwertung 8: 1–162.

Voigt E. 1972. Über Talpina ramosa v. Hagenow 1840, ein wahrscheinlich zu den Phoronidea gehöriger Bohrorganismus aus der Oberen Kreide, nebst Bemerkungen zu den übrigen bisher beschriebenen kretazischen “Talpina”-Arten. Nachrichten der Akademie der Wissenschaften II, Mathematisch-physikalische Klasse 7: 93–126.

Walker S.E., Hancock L.G. & Bowser S.S. 2017. Diversity, biogeography, body size and fossil record of parasitic and suspected parasitic foraminifera: a review. Journal of Foraminiferal Research 47: 34–55. https://doi.org/10.2113/gsjfr.47.1.34

Webby B.D., Paris F., Droser M. & Percival I.G. 2004. The Great Ordovician Biodiversification Event. Columbia University Press, New York.

Whittlesea P.S. 2005. First record of phragmocone and alveolar cavity of the chalk belemnite Gonioteuthis. Bulletin of the Geological Society of Norfolk 54: 15–23.

Wilson M.A. 2007. Macroborings and the evolution of marine bioerosion. In: Miller III W. (ed.) Trace Fossils: Concepts, Problems, Prospects: 356–367. Elsevier, Amsterdam. https://doi.org/10.1016/B978-044452949-7/50146-7

Wilson M.A. & Palmer T.J. 2006. Patterns and process in the Ordovician Bioerosion Revolution. Ichnos 13: 109–112.

Wilson M.A., Feldman H.R. & Krivicich E.K. 2010. Bioerosion in an equatorial Middle Jurassic coral-sponge reef community (Callovian, Matmor Formation, southern Israel). Palaeogeography, Palaeoclimatology, Palaeoecology 289: 93–101. https://doi.org/10.1016/j.palaeo.2010.02.019

Wisshak M. 2006. High-Latitude Bioerosion: The Kosterfjord Experiment. Lecture Notes in Earth Sciences 109. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-36849-6

Wisshak M. 2008. Two new dwarf Entobia ichnospecies in a diverse aphotic ichnocoenosis (Pleistocene / Rhodes, Greece). In: Wisshak M. & Tapanila L. (eds) Current Developments in Bioerosion: 213–233. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_11

Wisshak M. 2012. Microbioerosion. In: Knaust D. & Bromley R.G. (eds) Trace Fossils as Indicators of Sedimentary Environments: 213–243. Elsevier, Amsterdam.

https://doi.org/10.1016/B978-0-444-53813-0.00008-3

Wisshak M. & Rüggeberg A. 2006. Colonisation and bioerosion of experimental substrates by benthic foraminiferans from euphotic to aphotic depths (Kosterfjord, SW Sweden). Facies 52: 1–17. https://doi.org/10.1007/s10347-005-0033-1

Wisshak M., Freiwald A., Lundälv T. & Gektidis M. 2005a. The physical niche of bathyal Lophelia pertusa in a non-bathyal setting: environmental controls and palaeoecological implications. In: Freiwald A. & Roberts J.M. (eds) Cold-Water Corals and Ecosystems: 979–1001. Springer, Heidelberg. https://doi.org/10.1007/3-540-27673-4_49

Wisshak M., Gektidis M., Freiwald A. & Lundälv T. 2005b. Bioerosion along a bathymetric gradient in a cold-temperate setting (Kosterfjord, SW Sweden): an experimental study. Facies 51: 93–117. https://doi.org/10.1007/s10347-005-0009-1

Wisshak M., Seuss B. & Nützel A. 2008. Evolutionary implications of an exceptionally preserved Carboniferous microboring assemblage in the Buckhorn Asphalt lagerstätte (Oklahoma, USA). In: Wisshak M. & Tapanila L. (eds) Current Developments in Bioerosion: 21–54. Springer, Heidelberg. https://doi.org/10.1007/978-3-540-77598-0_2

Wisshak M., Tribollet A., Golubic S., Jakobsen J. & Freiwald A. 2011. Temperate bioerosion: ichnodiversity and biodiversity from intertidal to bathyal depths (Azores). Geobiology 9: 492–520. https://doi.org/10.1111/j.1472-4669.2011.00299.x

Wisshak M., Neumann C., Knaust D. & Reich M. 2017. Rediscovery of type material of the bioerosional trace fossil Talpina von Hagenow, 1840 and its ichnotaxonomical implications. Paläontologische Zeitschrift 91: 127–135. https://doi.org/10.1007/s12542-017-0335-y

Zeff M.L. & Perkins R.D. 1979. Microbial alteration of Bahamian deep-sea carbonates. Sedimentology 26: 175–201.

Zittel K. 1879. Studien über fossile Spongien. Dritte Abtheilung: Monactinellidae, Tetractinellidae und Calcispongiae. Abhandlungen der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften 13: 91–138.

Published
2017-12-29
How to Cite
Wisshak, M. (2017). Taming an ichnotaxonomical Pandora’s box: revision of dendritic and rosetted microborings (ichnofamily: Dendrinidae). European Journal of Taxonomy, (390). https://doi.org/10.5852/ejt.2017.390