Morphological versus molecular delimitation of ciliate species: a case study of the family Clevelandellidae (Protista, Ciliophora, Armophorea)

  • Lukáš Pecina Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava
  • Peter Vďačný Department of Zoology, Comenius University in Bratislava, 842 15 Bratislava http://orcid.org/0000-0003-4877-0234
Keywords: 18S rRNA gene, cell outline, morphometry, shape analysis, species concepts

Abstract

The endozoic ciliates of the family Clevelandellidae Kidder, 1938 typically inhabit the hindgut of wood-feeding panesthiine cockroaches. To assess the consistency of species delimitation in clevelandellids, we tested the utility of three sources of taxonomic data: morphometric measurements, cell geometrical information, and 18S rRNA gene sequences. The morphometric and geometrical data delimited the clevelandellid morphospecies consistently and unambiguously. However, only Paraclevelandia brevis Kidder, 1937 represented a homogenous taxon in both morphological and molecular analyses; the morphospecies Clevelandella constricta (Kidder, 1937) and C. hastula (Kidder, 1937) contained two or three distinct, more or less closely related genotypes each; and the genetic homogeneity of the morphospecies C. panesthiae (Kidder, 1937) and C. parapanesthiae (Kidder, 1937) was not corroborated by the 18S rRNA gene sequences at all. Moreover, the 18S rRNA gene phylogenies suggested the C. panesthiae-like morphotype to be the ancestral phenotype from which all other clevelandellid morphotypes arose. The only exception was the C. constricta-like morphotype, which very likely branched off before the diversification of the C. panesthiae-like progenitor. The present molecular analyses also suggested that a huge proportion of the clevelandellid diversity still waits to be discovered, since examination of only four panesthiine populations revealed 10 distinct clevelandellid genotypes/molecular species.

References

Abraham J.S., Sripoorna S., Maurya S., Makhija S., Gupta R. & Toteja R. 2019. Techniques and tools for species identification in ciliates: a review. International Journal of Systematic and Evolutionary Microbiology 69: 877–894. https://doi.org/10.1099/ijsem.0.003176

Albaret J.-L. 1975. Étude systématique et cytologique sur les ciliés hétérotriches endocommensaux. Mémoires du Muséum national d’Histoire naturelle (Nouvelle Série) 89: 1–114.

Beccaloni G.W. 2020. Cockroach Species File Online. Version 5.0/5.0. Available from http://cockroach.speciesfile.org/HomePage/Cockroach/HomePage.aspx [accessed 15 Apr. 2020].

Beccati A., Gerken J., Quast C., Yilmaz P. & Glöckner F.O. 2017. SILVA tree viewer: interactive web browsing of the SILVA phylogenetic guide trees. BMC Bioinformatics 18: e433. https://doi.org/10.1186/s12859-017-1841-3

Belyea P.R. & Thunell R.C. 1984. Fourier shape analysis and planktonic foraminiferal evolution: the Neogloboquadrina-Pulleniatina lineages. Journal of Paleontology 58: 1026–1040.

Berger J. & Hatzidimitriou G. 1978. Multivariate morphometric analyses of demic variation in Ancistrum mytili (Ciliophora: Scuticociliatida) commensal in two mytilid pelecypods. Protistologica 14: 133–153.

Boenigk J., Ereshefsky M., Hoef-Emden K., Mallet J. & Bass D. 2012. Concepts in protistology: species definitions and boundaries. European Journal of Protistology 48: 96–102. https://doi.org/10.1016/j.ejop.2011.11.004

Bonhomme V., Picq S., Gaucherel C. & Claude J. 2014. Momocs: outline analysis using R. Journal of Statistical Software 56: 1–24. Available from http://www.jstatsoft.org/v56/i13 [accessed 18 Jul. 2020].

Boscaro V., Carducci D., Barbieri G., Senra M.V., Andreoli I., Erra F., Petroni G., Verni F. & Fokin S.I. 2014. Focusing on genera to improve species identification: revised systematics of the ciliate Spirostomum. Protist 165: 527–541. https://doi.org/10.1016/j.protis.2014.05.004

Chenuil A., Cahill A.E., Délémontey N., Du Salliant du Luc E. & Fanton H. 2019. Problems and questions posed by cryptic species. A framework to guide future studies. In: Casetta E., Marques da Silva J. & Vecchi D. (eds) From Assessing to Conserving Biodiversity. History, Philosophy and Theory of the Life Sciences 24: 77–106. Springer, Cham. https://doi.org/10.1007/978-3-030-10991-2_4

Coyne J.A. & Orr H.A. 2004. Speciation. Sinauer Associates, Sunderland, MA.

Czech L., Huerta-Cepas J. & Stamatakis A. 2017. A critical review on the use of support values in tree viewers and bioinformatics toolkits. Molecular Biology and Evolution 34: 1535–1542. https://doi.org/10.1101/035360

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: e772. https://doi.org/10.1038/nmeth.2109

Doerder F.P. 2019. Barcodes reveal 48 new species of Tetrahymena, Dexiostoma, and Glaucoma: phylogeny, ecology, and biogeography of new and established species. Journal of Eukaryotic Microbiology 66: 182–208. https://doi.org/10.1111/jeu.12642

Ehrenberg C.G. 1838. Die Infusionsthierchen als vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Verlag von Leopold Voss, Leipzig. https://doi.org/10.5962/bhl.title.58475

Foissner W. 2014. An update of ‘basic light and scanning electron microscopic methods for taxonomic studies of ciliated protozoa’. International Journal of Systematic and Evolutionary Microbiology 64: 271–292. https://doi.org/10.1099/ijs.0.057893-0

Foissner W. & Schubert G. 1983. Morphologische und diskriminanzanalytische Trennung von Colpoda aspera Kahl, 1926 und Colpoda elliotti Bradbury et Outka, 1967 (Ciliophora: Colpodidae). Acta Protozoologica 22: 127–138.

Foissner W., Agatha S. & Berger H. 2002. Soil ciliates (Protozoa, Ciliophora) from Namibia (Southwest Africa), with emphasis on two contrasting environments, the Etosha region and the Namib Desert. Denisia 5: 1–1459.

Foissner W., Chao A. & Katz L.A. 2008. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodiversity and Conservation 17: 345–363. https://doi.org/10.1007/s10531-007-9254-7

Gentekaki E. & Lynn D.H. 2010. Evidence for cryptic speciation in Carchesium polypinum Linnaeus, 1758 (Ciliophora: Peritrichia) inferred from mitochondrial, nuclear, and morphological markers. Journal of Eukaryotic Microbiology 57: 508–519. https://doi.org/10.1111/j.1550-7408.2010.00505.x

Gong J., Dong J., Liu X. & Massana R. 2013. Extremely high copy numbers and polymorphisms of the rDNA operon estimated from single cell analysis of oligotrich and peritrich ciliates. Protist 164: 369–379. https://doi.org/10.1016/j.protis.2012.11.006

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307‒321. https://doi.org/10.1093/sysbio/syq010

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Healy-Williams N. & Williams D.F. 1981. Fourier analysis of test shape of planktonic foraminifera. Nature 289: 485–487. https://doi.org/10.1038/289485a0

Hey J. 2001. Genes, Categories, and Species. Oxford University Press, Oxford.

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hunter J.D. 2007. Matplotlib: a 2D graphics environment. Computing in Science and Engineering 9: 90–95. https://doi.org/10.1109/MCSE.2007.55

International Commission on Zoological Nomenclature (ICZN). 1999. International Code of Zoological Nomenclature. 4th Ed. Tipografia La Garangola, Padova.

Jones T.C. & Gates M.A. 1994. A morphometric analysis of the Euplotes charon morphotype (Ciliophora: Euplotida). Journal of Eukaryotic Microbiology 41: 441–450.

Jung J.-H. & Berger H. 2019. Monographic treatment of Paraholosticha muscicola (Ciliophora, Keronopsidae), including morphological and molecular biological characterization of a brackish water population from Korea. European Journal of Protistology 68: 48–67. https://doi.org/10.1016/j.ejop.2018.12.004

Kidder G.W. 1937. The intestinal protozoa of the wood-feeding roach Panesthia. Parasitologica 29: 163–205.

Kidder G.W. 1938. Nuclear reorganization without cell division in Paraclevelandia simplex (family Clevelandellidae), an endocommensal ciliate of the wood-feeding roach, Panesthia. Archiv für Protistenkunde 91: 69–77.

Lewis P.O., Holder M.T. & Swofford D.L. 2015. Phycas: software for Bayesian phylogenetic analysis. Systematic Biology 64: 525–531. https://doi.org/10.1093/sysbio/syu132

Li C., Zhao W., Zhang D., Wang R., Wang G., Zou H., Li W., Wu S. & Li M. 2018. Sicuophora (Syn. Wichtermania) multigranularis from Quasipaa spinosa (Anura): morphological and molecular study, with emphasis on validity of Sicuophora (Armophorea, Clevelandellida). Parasite 25: e38. https://doi.org/10.1051/parasite/2018035

Lynn D.H. 2008. The Ciliated Protozoa. Characterization, Classification and Guide to the Literature. 3rd Ed. Springer, Dordrecht.

Lynn D.H. & Malcolm J.R. 1983. A multivariate study of morphometric variation in species of the ciliate genus Colpoda (Ciliophora: Colpodida). Canadian Journal of Zoology 61: 307–316. https://doi.org/10.1139/z83-041

Lynn D.H. & Wright A.-D.G. 2013. Biodiversity and molecular phylogeny of Australian Clevelandella species (class Armophorea, order Clevelandellida, family Clevelandellidae), intestinal endosymbiotic ciliates in the wood-feeding roach Panesthia cribrata Saussure, 1864. Journal of Eukaryotic Microbiology 60: 335–341. https://doi.org/10.1111/jeu.12037

MacLeod N. & Forey P. (eds) 2002. Morphology, Shape and Phylogeny. Taylor & Francis, London, New York.

Maddison W.P. & Maddison D.R. 2007. Mesquite: a modular system for evolutionary analysis. Version 2.0. Available from http://mesquiteproject.org/ [accessed 29 Jun. 2020].

Mandal A.K. & Nair K.N. 1974. Clevelandella kidderi sp. n. (Clevelandellidae) new heterotrichous ciliates from wood-feeding roach (Panesthia sp.) of Andaman Islands, India. Acta Protozoologica 12: 351–354.

Marhold K. 2011. Multivariate morphometrics and its application to monography at specific and infraspecific levels. In: Stuessy T.F. & Lack H.W. (eds) Monographic Plant Systematics: Fundamental Assessment of Plant Biodiversity: 73–99. Gantner Verlag, Ruggell, Liechtenstein.

McKinney W. 2010. Data structures for statistical computing in Python. In: van der Walt S. & Millman J. (eds) Proceedings of the 9th Python in Science Conference: 51–56. Austin, TX.

Medlin L., Elwood H.J., Stickel S. & Sogin M.L. 1988. The characterization of enzymatically amplified eukaryotic l6S-like rRNA-coding regions. Gene 71: 491–499. https://doi.org/10.1016/0378-1119(88)90066-2

Miller M.A., Pfeiffer W. & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. Piscataway, NJ, New Orleans, LA. https://doi.org/10.1109/GCE.2010.5676129

Nguyen L.T., Schmidt H.A., von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Obert T. & Vďačný P. 2019. Integrative taxonomy of five astome ciliates (Ciliophora, Astomatia) isolated from earthworms in Central Europe. European Journal of Taxonomy 559: 1–37. https://doi.org/10.5852/ejt.2019.559

Obert T. & Vďačný P. 2020. Delimitation of five astome ciliate species isolated from the digestive tube of three ecologically different groups of lumbricid earthworms, using the internal transcribed spacer region and the hypervariable D1/D2 region of the 28S rRNA gene. BMC Evolutionary Biology 20: e37. https://doi.org/10.1186/s12862-020-1601-2

Oliphant T.E. 2015. Guide to NumPy. 2nd Ed. Continuum Press, Austin, TX.

Pecina L. & Vďačný P. 2020. Two new endozoic ciliates, Clevelandella lynni sp. n. and Nyctotherus galerus sp. n., isolated from the hindgut of the wood-feeding cockroach Panesthia angustipennis (Illiger, 1801). Journal of Eukaryotic Microbiology 67: 436–449. https://doi.org/10.1111/jeu.12793

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M. & Duchesnay É. 2011. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12: 2825–2830.

Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J. & Glöckner F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 7188–7196. https://doi.org/10.1093/nar/gkm864

Przyboś E., Tarcz S., Rautian M. & Sawka N. 2015. Delimiting species boundaries within a paraphyletic species complex: insights from morphological, genetic, and molecular data on Paramecium sonneborni (Paramecium aurelia species complex, Ciliophora, Protozoa). Protist 166: 438–456. https://doi.org/10.1016/j.protis.2015.07.001

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J. & Glöckner F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41: D590–D596. https://doi.org/10.1093/nar/gks1219

R Development Core Team. 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/ [accessed 15 Apr. 2020].

Rambaut A., Drummond A.J., Xie D., Baele G. & Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032

Rataj M. & Vďačný P. 2019. Living morphology and molecular phylogeny of oligohymenophorean ciliates associated with freshwater turbellarians. Diseases of Aquatic Organisms 134: 147–166. https://doi.org/10.3354/dao03366

Rataj M. & Vďačný P. 2020. Multi-gene phylogeny of Tetrahymena refreshed with three new histophagous species invading freshwater planarians. Parasitology Research 119: 1523–1545. https://doi.org/10.1007/s00436-020-06628-0

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Scheiner S.M. 1993. Genetics and evolution of phenotypic plasticity. Annual Review of Ecology and Systematics 24: 35–68. https://doi.org/10.1146/annurev.es.24.110193.000343

Schneider C.A., Rasband W.S. & Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9: 671–675. https://doi.org/10.1038/nmeth.2089

Shazib S.U.A., Vďačný P., Kim J.H., Jang S.W. & Shin M.K. 2016. Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Molecular Phylogenetics and Evolution 102: 128–144. https://doi.org/10.1016/j.ympev.2016.05.041

Shazib S.U.A., Vďačný P., Slovák M., Gentekaki E. & Shin M.K. 2019. Deciphering phylogenetic relationships and delimiting species boundaries using a Bayesian coalescent approach in protists: a case study of the ciliate genus Spirostomum (Ciliophora, Heterotrichea). Scientific Reports 9: e16360. https://doi.org/10.1038/s41598-019-52722-4

Stein F. 1859. Der Organismus der Infusionsthiere nach eigenen Forschungen in systematischer Reihenfolge bearbeitet. I. Abtheilung. Allgemeiner Theil und Naturgeschichte der hypotrichen Infusionsthiere. W. Engelmann, Leipzig. https://doi.org/10.5962/bhl.title.3933

Uttangi J.C. & Desai R.N. 1963. Metaclevelandella termitis, a new genus and species of heterotrichous ciliate (family Clevelandellidae) found in the Indian termite Capritermes incola Wasm. Parasitology 53: 39–43. https://doi.org/10.1017/S0031182000072504

Vďačný P. & Foissner W. 2017. A huge diversity of metopids (Ciliophora, Armophorea) in soil from the Murray River floodplain, Australia. I. Description of five new species and redescription of Metopus setosus Kahl, 1927. European Journal of Protistology 58: 35–76. https://doi.org/10.1016/j.ejop.2016.12.001

Vďačný P., Bourland W.A., Orsi W., Epstein S.S. & Foissner W. 2011. Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene. Molecular Phylogenetics and Evolution 59: 510–522. https://doi.org/10.1016/j.ympev.2011.02.016

Vďačný P., Slovák M. & Foissner W. 2014. Multivariate morphometric analyses of the predatory ciliate genus Semispathidium (Ciliophora: Litostomatea), with description of S. longiarmatum nov. spec. European Journal of Protistology 50: 329–344. https://doi.org/10.1016/j.ejop.2014.03.003

Vďačný P., Rajter Ľ., Stoeck T. & Foissner W. 2019. A proposed timescale for the evolution of armophorean ciliates: clevelandellids diversify more rapidly than metopids. Journal of Eukaryotic Microbiology 66: 167–181. https://doi.org/10.1111/jeu.12641

Via S., Gomulkiewicz R., De Jong G., Scheiner S.M., Schlichting C.D. & Van Tienderen P.H. 1995. Adaptive phenotypic plasticity: consensus and controversy. Trends in Ecology & Evolution 10: 212–217. https://doi.org/10.1016/S0169-5347(00)89061-8

Zhao Y., Yi Z., Gentekaki E., Zhan A., Al-Farraj S.A. & Song W.B. 2016. Utility of combining morphological characters, nuclear and mitochondrial genes: an attempt to resolve the conflicts of species identification for ciliated protists. Molecular Phylogenetics and Evolution 94B: 718–729. https://doi.org/10.1016/j.ympev.2015.10.017

Zhao Y., Yi Z., Warren A. & Song W.B. 2018. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). Proceedings of the Royal Society B 285: e20172159. https://doi.org/10.1098/rspb.2017.2159

Published
2020-08-06
How to Cite
Pecina, L., & Vďačný, P. (2020). Morphological versus molecular delimitation of ciliate species: a case study of the family Clevelandellidae (Protista, Ciliophora, Armophorea). European Journal of Taxonomy, (697). https://doi.org/10.5852/ejt.2020.697
Section
Zoology