Revision of the morphology, phylogenetic relationships, behaviour and diversity of the Iberian and Italian ant-like Tachydromia Meigen, 1803 (Diptera: Hybotidae)
Abstract
Phylogenetic inference, based on five molecular markers (COI, 28S, AATS, 12S, PGD), corroborates the synonymy of the flightless genera Pieltainia Arias, 1919 and Ariasella Gil, 1923 with Tachydromia Meigen, 1803. The secondary structure of the 28S rRNA gene is used for the first time in this family to align the multiple sequences. Molecular and morphological data are largely congruent for all known species of flightless Tachydromia. This paper treats ten western Mediterranean species (nine Iberian and one Italian) in detail, including the description of four new species: T. ebejeri Gonçalves, Grootaert & Andrade sp. nov., T. stenoptera Gonçalves, Grootaert & Andrade sp. nov., T. cantabrica Gonçalves, Grootaert & Andrade sp. nov. and T. nigrohirta Gonçalves, Grootaert & Andrade sp. nov. The male of Tachydromia pieltaini (Gil Collado, 1936) and the female of Tachydromia apterygon Plant & Deeming, 2006 are described for the first time, while a lectotype is assigned to Tachydromia pandellei (Séguy, 1941). A key to all non-macropterous Tachydromia is supplied. Knowledge on the geographic distribution of most species is considerably enhanced. The mating behaviour of Tachydromia semiaptera (Gil Collado, 1923) and Tachydromia iberica (Arias, 1919) is documented for the first time, and we propose a change in the definition of terms apterous and micropterous to properly accommodate the diversity of wing states in this cluster of species.
References
Andrade R. 2011. Observations on the behaviour of Ariasella lusitanica, Grootaert et al., 2009 (Diptera, Hybotidae, Tachydromiinae) from Portugal. Bulletin de la Société royale belge d’Entomologie 147: 241–250.
Arias J. 1919. Descripción preliminar de un nuevo Émpido de España. Boletin de la Real Sociedad Española de Historia Natural 19: 479–481.
Benito Garzón M., Sánchez de Dios R. & Sainz Ollero H. 2008. Effects of climate change on the distribution of Iberian tree species. Applied Vegetation Science 11: 169 178. https://doi.org/10.3170/2008-7-18348
Bertone M.A., Courtney G.W. & Wiegmann B.M. 2008. Phylogenetics and temporal diversification of the earliest true flies (Insecta: Diptera) based on multiple nuclear genes. Systematic Entomology 33 (4): 668–687. https://doi.org/10.1111/j.1365-3113.2008.00437.x
Chvála M. 1970. Revision of Palaearctic species of the genus Tachydromia Meig. (= Tachista Loew) (Diptera, Empididae). Acta Entomologica Musei Nationalis Pragae 38 (1969): 415–524.
Chvála M. 1975. The Tachydromiinae (Dipt. Empididae) of Fennoscandia and Denmark. Fauna Entomologica Scandinavica 3: 1–336.
Costa M., Morla C. & Sainz H. 2005. Los Bosques Ibéricos: Una Interpretación Geobotánica. 4th edition. Editorial Planeta, Barcelona.
Cumming J.M. & Wood D.M. 2017. Adult morphology and terminology. In: Kirk-Spriggs A. & Sinclair B.J. (eds) Manual of Afrotropical Diptera 1: 112. South African National Biodiversity Institute, Cape Town
Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.
Gibson J.F., Kelso S., Jackson M.D., Kits J.H., Miranda G.F. & Skevington J.H. 2011. Diptera-specific polymerase chain reaction amplification primers of use in molecular phylogenetic research. Annals of the Entomological Society of America 104 (5): 976–997. https://doi.org/10.1603/AN10153
Gil J. 1923. Estudio de un nuevo Taquidromino de España. Boletín de la Real Sociedad Española de Historia Natural 1923: 150–154.
Gil J. 1936. Una nueva especie del género Ariasella Gil, con breves consideraciónes sobre la reduccion del tórax en los Taquidrominos ápteros. Eos (Revista Española de Entomologia) 11 (3): 191–201.
Grootaert P. & Shamshev I. 2008. Notes on the halobiont genus Chersodromia (Diptera: Hybotidae) from Tunisia with the description of a new brachypterous species and notes on brachyptery in empidoids. Bulletin de la Société royale belge d’Entomologie 144: 57–63.
Grootaert P., Shamshev I. & Andrade R. 2009. Description of a new brachypterous Ariasella Gil (Diptera, Hybotidae, Tachydromiinae) from Portugal. Bulletin de la Société royale belge d’Entomologie 145: 45–48.
Hackman W. 1964. On reduction and loss of wings in Diptera. Notulae Entomologicae 44: 73–93.
Huelsenbeck J.P. & Ronquist F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
Jemu. 2011. D1.Ft. Available from http://jemu.myspecies.info/d1ft [accessed 20 Sep. 2017].
Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
Katoh K., Kuma K., Toh H. & Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33 (2): 511–518. https://doi.org/10.1093/nar/gki198
Katoh K., Asimenos G. & Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. In: Posada D. (ed.) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology 537: 39–64. https://doi.org/10.1007/978-1-59745-251-9_3
Kjer K.M. 1995. Use of rRNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution 4 (3): 314–330. https://doi.org/10.1006/mpev.1995.1028
Kjer K.M., Roshan U. & Gillepie J.G. 2009. Structural and evolutionary considerations for multiple sequence alignment of RNA, and the challenges for Algorithms that ignore them. In: Rosenberg M.S. (ed.) Sequence Alignment: Methods, Models, Concepts, and Strategies: 105–150. University of California Press, USA.
Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054
Meier R., Shiyang K., Vaidya G. & Ng P.K.L. 2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55: 715–728. https://doi.org/10.1080/10635150600969864
Miller M.A., Pfeiffer W. & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. New Orleans.
Nagy Z.T., Sonet G., Mortelmans J., Vandewynkel C. & Grootaert P. 2013. Using DNA barcodes for assessing diversity in the family Hybotidae (Diptera, Empidoidea). ZooKeys 365: 263–278. https://doi.org/10.3897/zookeys.365.6070
NCBI Resource Coordinators. 2016. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 44 (D1): D7–D19. https://doi.org/10.1093/nar/gkv1290
Plant A.R. & Deeming J.C. 2006. An apterous species of Tachydromia Meigen, 1803 (Diptera: Hybotidae) from Italy. An International Journal of Dipterological Research 17 (1): 13–16.
Posada D. & Buckley T. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53 (5): 793–808. https://doi.org/10.1080/10635150490522304
Rambaut A. 2009. FigTree: Tree Figure Drawing Tool. Version 1.3.1. Available from http://tree.bio.ed.ac.uk/software/figtree/ [accessed 30 Nov. 2020].
Regier J.C., Shultz J.W., Ganley A.R., Hussey A., Shi D., Ball B., Zwick A., Stajich J.E., Cummings M.P., Martin J.W. & Cunningham C.W. 2008. Resolving arthropod phylogeny: Exploring phylogenetic signal within 4 kb of protein-coding nuclear gene sequence. Systematic Biology 57: 920–938. https://doi.org/10.1080/10635150802570791
Roff D.A. 1990. The evolution of flightlessness in insects. Ecological Monographs 60: 389–421. https://doi.org/10.2307/1943013
Roháček J. 2012. Wing polymorphism in European species of Sphaeroceridae (Diptera). Acta Entomologica Musei Nationalis Pragae 52 (2): 535–558.
Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
Séguy E. 1941. Étude sur un nouveau Corynétine des Pyrénées. Bulletin de la Société entomologique de France 46: 4–6.
Shamshev I.V. & Grootaert P. 2018. Proposed changes in systematics and status of some genera of Tachydromiini (Diptera: Hybotidae: Tachydromiinae), with description of a new species of Tachypeza Meigen from Canada and USA. Russian Entomological Journal 27 (4): 425–434. https://doi.org/10.15298/rusentj.27.4.10
Simon C., Frati F., Beckenbach A., Crespi B.J., Liu H. & Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87: 651–701. https://doi.org/10.1093/aesa/87.6.651
Sinclair B. & Cumming J. 2006. The morphology, higher-level phylogeny and classification of the Empidoidea (Diptera). Zootaxa 1180: 1–172. https://doi.org/10.11646/zootaxa.1180.1.1
Stark A. & Doczkal D. 2017. Tachydromia wendti spec. nov. (Diptera, Empidoidea, Hybotidae) from riverbeds at the Northern slope of the Alps and its forelands in Germany. Mauritiana (Altenburg) 34: 481– 498.
Su K., Kutty S. & Meier R., 2008. Morphology versus molecules: the phylogenetic relationships of Sepsidae (Diptera: Cyclorrhapha) based on morphology and DNA sequence data from ten genes. Cladistics 24 (6): 902–916.
Wahlberg E. & Johanson K.A. 2018. Molecular phylogenetics reveals novel relationships within Empidoidea (Diptera). Systematic Entomology 43: 610–636. https://doi.org/10.1111/syen.12297
Zwickl D.J. 2006. Genetic Algorithm Approaches for the Phylogenetic Analysis of large biological Sequence Datasets under the Maximum Likelihood Criterion. PhD thesis, The University of Texas, Austin, USA.
Copyright (c) 2021 Ana Rita Gonçalves, Patrick Grootaert, Rui Andrade, Octávio S. Paulo, Ximo Mengual
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.