Revision of the elusive ant genus Rhopalomastix (Hymenoptera, Formicidae, Myrmicinae) in Thailand based on morphology and DNA barcodes, with descriptions of three new species

  • Wendy Y. Wang Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377 https://orcid.org/0000-0003-0745-4702
  • Gordon W.J. Yong Department of Biological Sciences, Faculty of Science, National University of Singapore, 16 Science Drive 4, Singapore 117558
  • Weeyawat Jaitrong Natural History Museum, National Science Museum, Technopolis, Khlong 5, Khlong Luang, Pathum Thani, 12120 Thailand https://orcid.org/0000-0003-1362-0754
Keywords: systematics, NGS barcoding, arboreal ant, objective clustering

Abstract

The actual prevalence and diversity of the elusive Asian ant genus Rhopalomastix Forel, 1900 in Southeast Asia are largely unknown; only two named species were previously known from Thailand. Following substantial newly-collected museum material made available, we used a combined approach based on morphology and complementary DNA evidence to revise the genus in Thailand. Specimens were sorted to putative species by objective clustering of short fragment (313 bp) COI barcodes, after which specimens of each molecular cluster were morphologically examined. With morphology and supporting genetic evidence, we recognize five species of Rhopalomastix in Thailand, including three species new to science: R. impithuksai Wang & Jaitrong sp. nov., R. parva Wang & Jaitrong sp. nov., and R. robusta Wang & Jaitrong sp. nov. Different castes and sexes are described for most species where available. Descriptions of the two extant described species – R. javana Wheeler, 1929 and R. johorensis Wheeler, 1929 – are also revised, taking into account observations from the additional material. A key to Thai species based on the worker caste, with the three new species included, is further provided.

References

Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215 (3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Benson D.A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2013. GenBank. Nucleic Acids Research 41 (D1): D36–D42. https://doi.org/10.1093/nar/gks1195

Bergsten J., Bilton D.T., Fujisawa T., Elliott M., Monaghan M.T., Balke M., Hendrich L., Geijer J., Herrmann J., Foster G.N. & Ribera I. 2012. The effect of geographical scale of sampling on DNA barcoding. Systematic Biology 61 (5): 851–869. https://doi.org/10.1093/sysbio/sys037

Billen J. & Peeters C. 2020. Glandular innovations for a tunnelling life: silk and associated leg glands in Melissotarsus and Rhopalomastix queen and worker ants. Arthropod Structure & Development 59: 100979. https://doi.org/10.1016/j.asd.2020.100979

Bolton B. 1995. A New General Catalogue of the Ants of the World. Harvard University Press, Cambridge, MA.

Bolton B. 2003. Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute 71: 1–370.

Chapman J.W. & Capco S.R. 1951. Check list of the ants (Hymenoptera: Formicidae) of Asia. Monographs of the Institute of Science and Technology, Manila 1: 1–327

Donisthorpe H. 1936. Rhopalomastix janeti (Hym. Formicidae) a species of ant new to science. Entomologist's Record and Journal of Variation 48: 55–56. https://doi.org/10.5281/zenodo.26445

Emery C. 1914. Intorno alla classificazione dei Myrmicinae. Rendiconti delle Sessioni della Reale Accademia delle Scienze dell'Istituto di Bologna. Classe di Scienze Fisiche (n.s.) 18: 29–42.

Emery C. 1922. Hymenoptera. Fam. Formicidae. Subfam. Myrmicinae. [part]. In: Wytsmann P. (Dir.) Genera Insectorum 174B: 95–206. L. Desmet-Verteneuil, Brussels.

Forel A. 1900. Un nouveau genre et une nouvelle espèce de Myrmicide. Annales de la Société entomologique de Belgique 44: 24–26.

Forel A. 1917. Cadre synoptique actuel de la faune universelle des fourmis. Bulletin de la Société Vaudoise des Sciences naturelles 51: 229–253. https://doi.org/10.5281/zenodo.25600

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

Kranzfelder P., Ekrem T. & Stur E. 2016. Trace DNA from insect skins: a comparison of five extraction protocols and direct PCR on chironomid pupal exuviae. Molecular Ecology Resources 16 (1): 353–363. https://doi.org/10.1111/1755-0998.12446

Meier R., Shiyang K., Vaidya G. & Ng P.K. 2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Systematic Biology 55 (5): 715–728. https://doi.org/10.1080/10635150600969864

Meier R., Zhang G. & Ali F. 2008. The use of mean instead of smallest interspecific distances exaggerates the size of the “barcoding gap” and leads to misidentification. Systematic Biology 57 (5): 809–813. https://doi.org/10.1080/10635150802406343

Peeters C., Foldi I., Matile-Ferrero D. & Fisher B.L. 2017. A mutualism without honeydew: what benefits for Melissotarsus emeryi ants and armored scale insects (Diaspididae)? PeerJ 5: e3599. https://doi.org/10.7717/peerj.3599

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30 (12): 2725–2729. https://doi.org/10.1093/molbev/mst197

Wang W.Y., Srivathsan A., Foo M., Yamane S.K. & Meier R. 2018a. Sorting specimen-rich invertebrate samples with cost-effective NGS barcodes: validating a reverse workflow for specimen processing. Molecular Ecology Resources 18 (3): 490–501. https://doi.org/10.1111/1755-0998.12751

Wang W.Y., Yong G.W. & Jaitrong W. 2018b. The ant genus Rhopalomastix (Hymenoptera: Formicidae: Myrmicinae) in Southeast Asia, with descriptions of four new species from Singapore based on morphology and DNA barcoding. Zootaxa 4532 (3): 301–340. https://doi.org/10.11646/zootaxa.4532.3.1

Ward P.S., Brady S.G., Fisher B.L. & Schultz T.R. 2015. The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae). Systematic Entomology 40 (1): 61–81. https://doi.org/10.1111/syen.12090

Wheeler W.M. 1910. Ants: their Structure, Development and Behavior. Columbia University Press, New York.

Wheeler W.M. 1922. Ants of the American Museum Congo Expedition. A contribution to the myrmecology of Africa. VII. Keys to the genera and subgenera of ants. Bulletin of the American Museum of Natural History 45: 631–710.

Wheeler W.M. 1929. The ant genus Rhopalomastix. Psyche 36 (2): 95–101.

Xu Z. 1999. Systematic studies on the ant genera of Carebara, Rhopalomastix and Kartidris in China (Hymenoptera: Formicidae: Myrmicinae). Acta Biologica Plateau Sinica 14: 129–136.

Yong G., Matile-Ferrero D. & Peeters C. 2019. Rhopalomastix is only the second ant genus known to live with armoured scale insects (Diaspididae). Insectes Sociaux 66 (2): 273–282. https://doi.org/10.1007/s00040-019-00686-z

Published
2021-03-17
How to Cite
Wang, W. Y., Yong, G. W., & Jaitrong, W. (2021). Revision of the elusive ant genus Rhopalomastix (Hymenoptera, Formicidae, Myrmicinae) in Thailand based on morphology and DNA barcodes, with descriptions of three new species. European Journal of Taxonomy, 739(1), 117–157. https://doi.org/10.5852/ejt.2021.739.1271
Section
Research article