Monsters in the dark: systematics and biogeography of the stygobitic genus Godzillius (Crustacea: Remipedia) from the Lucayan Archipelago

  • Lauren Ballou Department of Marine Biology, Texas A&M University at Galveston, United States https://orcid.org/0000-0003-3348-354X
  • Thomas M. Iliffe Department of Marine Biology, Texas A&M University at Galveston, United States https://orcid.org/0000-0002-4342-5960
  • Brian Kakuk Bahamas Caves Research Foundation, Marsh Harbor, Abaco Island, the Bahamas
  • Brett C. Gonzalez Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States https://orcid.org/0000-0001-6968-2677
  • Karen J. Osborn Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC, United States https://orcid.org/0000-0002-4226-9257
  • Katrine Worsaae Department of Biology, University of Copenhagen, Denmark https://orcid.org/0000-0003-0443-4298
  • Kenneth Meland Department of Biological Sciences, University of Bergen, Norway
  • Kenneth Broad Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science & Abess Center, University of Miami, United States
  • Heather Bracken-Grissom Institute of Environment and Department of Biology, Florida International University - Biscayne Bay Campus, United States https://orcid.org/0000-0002-4919-6679
  • Jørgen Olesen Natural History Museum of Denmark, University of Copenhagen, Denmark https://orcid.org/0000-0001-9582-7083
Keywords: anchialine, cave, new species, phylogeny

Abstract

Remipedia is a stygobitic group commonly associated with coastal anchialine caves. This class consists of 12 genera, ten of which are found within the Lucayan Archipelago. Herein, we describe a new species within the genus Godzillius from Conch Sound Blue Hole, North Andros Island, Bahamas. Godzillius louriei sp. nov. is the third known remipede observed from a subseafloor marine cave, and the first from the Godzilliidae. Remipedes dwell within notoriously difficult to access cave habitats and thus integrative and comprehensive systematic studies at family or genus level are often absent in the literature. In this study, all species of Godzillius are compared using morphological and molecular approaches. Specifically, the feeding appendages of G. louriei sp. nov., G. fuchsi Gonzalez, Singpiel & Schlagner, 2013 and G. robustus Schram, Yager & Emerson, 1986 were examined using scanning electron microscopy (SEM). Species of Godzillius are identified based on the spines of maxilla 1 segment 4 and by the denticles on the lacinia mobilis of the left mandible. A molecular phylogeny using the mitochondrial 16S rRNA and nuclear histone 3 genes recovered G. louriei sp. nov. within the Godzillius clade and 16S genetic distances revealed a 13–15% difference between species of Godzillius.

References

Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Benson D.A., Boguski M.S., Lipman D.J., Ostell J. & Ouellette B.F.F. 1998. GenBank. Nucleic Acids Research 26: 1–7. https://doi.org/10.1093/nar/26.1.1

Bishop R.E., Humphreys W.F., Cukrov N., Žic V., Boxshall G.A., Cukrov M., Iliffe T.M., Kršinić F., Moore W.S., Pohlman J.W. & Sket B. 2015. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. Journal of Crustacean Biology 35: 511–514. https://doi.org/10.1163/1937240X-00002335

Brankovits D., Pohlman J.W., Niemann H., Leigh M.B., Leewis M.C., Becker K.W., Iliffe T.M., Alvarez F., Lehmann M.F. & Phillips B. 2017. Methane- and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nature Communications 8: 1–12. https://doi.org/10.1038/s41467-017-01776-x

Cánovas F., Jurado-Rivera J.A., Cerro-Gálvez E., Juan C., Jaume D. & Pons J. 2016. DNA barcodes, cryptic diversity and phylogeography of a W Mediterranean assemblage of thermosbaenacean crustaceans. Zoologica Scripta 45: 659–670. https://doi.org/10.1111/zsc.12173

Colgan D.J., McLauchlan A., Wilson G.D.F., Livingston S.P., Edgecombe G.D., Macaranas J., Cassis G. & Gray M.R. 1998. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology 46: 419–437. https://doi.org/10.1071/ZO98048

Daenekas J., Iliffe T.M., Yager J. & Koenemann S. 2009. Speleonectes kakuki, a new species of Remipedia (Crustacea) from anchialine and sub-seafloor caves on Andros and Cat Island, Bahamas. Zootaxa 2016 (1): 51–66. https://doi.org/10.11646/zootaxa.2016.1.3

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: e772. https://doi.org/10.1038/nmeth.2109

Farr M. 2017. The Darkness Beckons: The History and Development of World Cave Diving. Verte-brate Publishing.

Farr M. & Palmer R. 1984. The blue holes: description and structure. In: Ford T.D. (ed.) Bahamas Blue Holes 1981–1982. Cave Science 11 (1): 9–22.

Gonzalez B.C., Singpiel A. & Schlagner P. 2013. Godzillius fuchsi, a new species of Remipedia (Godzilliidae) from Abaco Island, Bahamas. Journal of Crustacean Biology 33: 275–285. https://doi.org/10.1163/1937240X-00002132

Gonzalez B.C., Martínez A., Borda E., Iliffe T.M., Fontaneto D. & Worsaae K. 2017. Genetic spatial structure of an anchialine cave annelid indicates connectivity within – but not between – islands of the Great Bahama Bank. Molecular Phylogenetics and Evolution 109: 259–270. https://doi.org/10.1016/j.ympev.2017.01.003

Guindon S. & Gascuel O. 2003. A simple, fast, and accurate method to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704. https://doi.org/10.1080/10635150390235520

Hart C.W. Jr, Manning R.B. & Iliffe T.M. 1985. The fauna of Atlantic marine caves: evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proceedings of the Biological Society of Washington 98: 288–292.

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hoenemann M., Neiber M.T., Humphreys W.F., Iliffe T.M., Li D., Schram F.R. & Koenemann S. 2013. Phylogenetic analysis and systematic revision of Remipedia (Nectiopoda) from Bayesian analysis of molecular data. Journal of Crustacean Biology 33: 603–619. https://doi.org/10.1163/1937240X-00002179

Hunter R.L., Webb M.S., Iliffe T.M. & Alvarado Bremer J.R. 2008. Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. Journal of Biogeography 35: 65–75. https://doi.org/10.1111/j.1365-2699.2007.01767.x

Juan C., Guzik M.T., Jaume D. & Cooper S.J.B. 2010. Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Molecular Ecology 19: 3865–3880. https://doi.org/10.1111/j.1365-294X.2010.04759.x

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K., Rozewicki J. & Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Koenemann S. & Iliffe T.M. 2014. Class Remipedia Yager, 1981. In: Klein V.K. (ed.) Treatise on Zoology-Anatomy, Taxonomy, Biology. The Crustacea. Volume 4, part A: 125–177. Brill, Leiden.

Koenemann S., Iliffe T.M. & Yager J. 2004. Kaloketos pilosus, a new genus and species of Remipedia (Crustacea) from the Turks and Caicos Islands. Zootaxa 618 (1): 1–12. https://doi.org/10.11646/zootaxa.618.1.1

Koenemann S., Schram F.R., Hönemann M. & Iliffe T.M. 2007. Phylogenetic analysis of Remipedia (Crustacea). Organisms Diversity & Evolution 7: 33–51. https://doi.org/10.1016/j.ode.2006.07.001

Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Lefébure T., Douady C.J., Gouy M. & Gibert J. 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution 40: 435–447. https://doi.org/10.1016/j.ympev.2006.03.014

Miller M.A., Pfeiffer W. & Schwartz T. 2010. “Creating the CIPRES Science Gateway for inference of large phylogenetic trees.” In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. IEEE Xplore, New Orleans. https://doi.org/10.1109/GCE.2010.5676129

Mylroie J.E. & Carew J.L. 1990. The flank margin model for dissolution cave development in carbonate platforms. Earth Surface Processes and Landforms 15: 413–424. https://doi.org/10.1002/esp.3290150505

Mylroie J.E. & Mylroie J.R. 2011. Void development on carbonate coasts: creation of anchialine habitats. Hydrobiologia 677: 15–32. https://doi.org/10.1007/s10750-010-0542-y

Natural Earth 2020. Natural Earth. Free vector and raster map data at 1 : 10m, 1 : 50m, and 1 : 100m scales. Available from https://naturalearthdata.com [accessed 18 May 2021].

Neiber M.T., Hansen F.C., Iliffe T.M., Gonzalez B.C. & Koenemann S. 2012. Molecular taxonomy of Speleonectes fuchscockburni, a new pseudocryptic species of Remipedia (Crustacea) from an anchialine cave system on the Yucatán Peninsula, Quintana Roo, Mexico. Zootaxa 3190 (1): 31–46. https://doi.org/10.11646/zootaxa.3190.1.2

Nguyen L.T., Schmidt H.A., von Haeseler A. & Minh B.Q. 2014. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Olesen J., Meland K., Glenner H., van Hengstum P.J. & Iliffe T.M. 2017. Xibalbanus cozumelensis, a new species of Remipedia (Crustacea) from Cozumel, Mexico, and a molecular phylogeny of Xibalbanus on the Yucatán Peninsula. European Journal of Taxonomy 316: 1–27. https://doi.org/10.5852/ejt.2017.316

QGIS Development Team 2020. QGIS Geographic Information System, ver. 3.12. Open Source Geospatial Foundation. Available from https://qgis.org [accessed 19 Mar. 2021].

Pais F.S.M., Ruy P.C., Oliveira G. & Coimbra R.S. 2014. Assessing the efficiency of multiple sequence alignment programs. Algorithms for Molecular Biology 9: 1–8. https://doi.org/10.1186/1748-7188-9-4

Palmer R. 1997. Deep into Blue Holes. Media Publishing, Nassau, Bahamas.

Palumbi S., Martin A., Romano S., McMillan W.O., Stice L. & Grabowski G. 2002. The Simple Fool’s Guide to PCR. Ver. 2. Department of Zoology and Kewalo Marine Laboratory, Honolulu.

Rambaut A., Drummond A.J., Xie D., Baele G. & Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032

Reid W.V. 1998. Biodiversity hotspots. Trends in Ecology & Evolution 13: 275–280. https://doi.org/10.1016/S0169-5347(98)01363-9

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Schram F.R., Yager J. & Emerson M.J. 1986. Remipedia Part 1. Systematics. San Diego Society of Natural History, Memoir 15: 1–60.

Song H., Buhay J.E., Whiting M.F. & Crandall K.A. 2008. Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences 105: 13486–13491. https://doi.org/10.1073/pnas.0803076105

Surić M., Juračić M., Horvatinčić N. & Bronić I.K. 2005. Late Pleistocene–Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Marine Geology 214: 163–175. https://doi.org/10.1016/j.margeo.2004.10.030

van Hengstum P.J., Cresswell J.N., Milne G.A. & Iliffe T.M. 2019. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Scientific Reports 9: 1–10. https://doi.org/10.1038/s41598-019-48058-8

Yager J. 2013. Speleonectes cokei, new species of Remipedia (Crustacea: Speleonectidae) from a submerged ocean cave near Caye Chapel, Belize. Zootaxa 3710 (4): 354–362. https://doi.org/10.11646/zootaxa.3710.4.4

Zhou X., Shen X.X., Hittinger C.T. & Rokas A. 2017. Evaluating fast Maximum Likelihood-based phylogenetic programs using empirical phylogenomic data sets. Molecular Biology and Evolution 35: 486–503. https://doi.org/10.1093/molbev/msx302

Published
2021-06-07
How to Cite
Ballou, L., Iliffe, T. M., Kakuk, B., Gonzalez, B. C., Osborn, K. J., Worsaae, K., Meland, K., Broad, K., Bracken-Grissom, H., & Olesen, J. (2021). Monsters in the dark: systematics and biogeography of the stygobitic genus Godzillius (Crustacea: Remipedia) from the Lucayan Archipelago. European Journal of Taxonomy, 751(1), 115-139. https://doi.org/10.5852/ejt.2021.751.1383
Section
Research article