Asplenium danxiaense sp. nov. (Aspleniaceae, Aspleniineae), a new tetraploid fern species from Guangdong, China, based on morphological and molecular data

Keywords: cave, cryptic species, Danxia landform, southern China

Abstract

The Asplenium coenobiale complex is distributed in Eastern Asia and Southeast Asia with its distribution center in southwestern China. In this study, we carried out a detailed morphological, cytological, and phylogenetic study by adding two samples from Danxia landform in Guangdong. The sequences of five chloroplast markers and one nuclear marker of the A. coenobiale complex were analyzed with maximum likelihood and Bayesian inference, respectively. The morphological and phylogenetic analyses support the recognition of a new species (A. danxiaense K.W.Xu sp. nov.) of the A. coenobiale complex from a cave of Danxia mountain, Guangdong province, southern China. This new species can be distinguished from A. coenobiale and A. pulcherrimum by having scales narrowly triangular to lanceolate, apex ending in a short apical tail, basal basiscopic pinnule usually largest, fertile segment scarce, and exospore length usually more than 50 μm and shows significant molecular differences from other species in this complex. A detailed description and illustrations are presented.

References

Chang Y.-F., Ebihara A., Lu S.-G., Liu H.-M. & Schneider H. 2018. Integrated taxonomy of the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Journal of Plant Research 131: 573–587. https://doi.org/10.1007/s10265-018-1032-y

Darriba D., Taboada G. L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772–772. https://doi.org/10.1038/nmeth.2109

Dolezel J., Bartos J., Voglmayr H. & Greilhuber J. 2003. Nuclear DNA content and genome size of trout and human. Cytometry. Part A: the journal of the International Society for Analytical Cytology 51 (2): 127–128. https://doi.org/10.1002/cyto.a.10013

Doyle J.J. & Doyle J.L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11–15.

Dyer R.J., Savolainen V. & Schneider H. 2012. Apomixis and reticulate evolution in the Asplenium monanthes fern complex. Annals of Botany 110: 1515–1529. https://doi.org/10.1093/aob/mcs202

Fujiwara T., Uehara A., Iwashina T., Matsumoto A., Chang Y.H., Chao Y.S. & Watano Y. 2017. Allotetraploid cryptic species in Asplenium normale in the Japanese Archipelago, detected by chemotaxonomic and multi-locus genotype approaches. American Journal of Botany 104: 1390–1407. https://doi.org/10.3732/ajb.1700141

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Ishikawa H., Watano Y., Kano K., Ito M. & Kurita S. 2002. Development of primer sets for PCR amplification of the pgiC gene in ferns. Journal of Plant Research 115: 65–70. https://doi.org/10.1007/s102650200010

IUCN. 2012. IUCN Red List Categories and Criteria: Version 3.1. Second edition. Gland, Switzerland. Available from https://portals.iucn.org/library/node/10315 [accessed 5 November 2021].

Jiang R.-H., Zhang X.-C. & Liu Y. 2011. Asplenium cornutissimum (Aspleniaceae), a new species from karst caves in Guangxi, China. Brittonia 63 (1): 83–86. https://doi.org/10.1007/s12228-010-9139-z

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kramer K.U. & Viane R. 1990. Aspleniaceae. In: Kubitzki K., Kramer K.U. & Green P.S. (eds) The Families and Genera of Vascular Plants. Vol. 1. Pteridophytes and Gymnosperms: 52–57. Springer, Berlin. https://doi.org/10.1007/978-3-662-02604-5_14

Liang S.-Q., Zhang X.-C. & Wei R. 2019. Integrative taxonomy resolved species delimitation in a fern complex: A case study of the Asplenium coenobiale complex. Biodiversity Science 27 (11): 1205–1220. https://doi.org/10.17520/biods.2019316

Liang S.-Q., Viane R.L.L., Zhang X.-C. & Wei R. 2021. Exploring the reticulate evolution in the Asplenium pekinense complex and the A. varians complex (Aspleniaceae). Journal of Systematics and Evolution 59 (1): 125–140. https://doi.org/10.1111/jse.12530

Lin Y.-X. & Viane R.L.L. 2013. Aspleniaceae. In: Wu Z.-Y., Raven P.H. & Hong D.-Y. (eds) Flora of China. Vol. 2–3: 267–316. Science Press/Missouri Botanical Garden Press, Beijing and St. Louis.

Miller M.A., Pfeiffer W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE): 1–8. 14 Nov 2010, New Orleans, LA. https://doi.org/10.1109/GCE.2010.5676129

Ohlsen D.J., Perrie L.R., Shepherd L.D., Brownsey P.J. & Bayly M.J. 2015. Phylogeny of the fern family Aspleniaceae in Australasia and the southwestern Pacific. Australian Systematic Botany 27: 355–371. https://doi.org/10.1071/SB14043

Peng H. 2009. The concept, research history and existing problems of Danxia. In: Peng H. (ed.) First international symposium on Danxia landform. Mount Danxia, Shaoguan, Guangdong, China.

Pérez J.M.M. & Pascau J. 2013. Image processing with ImageJ. Packt Publishing Ltd., Birmingham.

Rambaut A. & Drummond A.J. 2007. Tracer 1.4. Available from http://beast.bio.ed.ac.uk/Tracer [accessed 15 Oct. 2021].

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Schneider H., Ranker T.A., Russell S.J., Cranfill R., Geiger J.M., Aguraiuja R., Wood K.R., Grundmann M., Kloberdanz K. & Vogel J.C. 2005. Origin of the endemic fern genus Diella coincides with the renewal of Hawaiian terrestrial life in the Miocene. Proceedings of the Royal Society B: Biological Sciences 272: 455–460. https://doi.org/10.1098/rspb.2004.2965

Schuettpelz E. & Pryer K.M. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56: 1037–1050. https://doi.org/10.2307/25065903

Wu S.-H. 1999. Aspleniaceae. In: Wu Z.-Y. (ed.) Flora Reipublicae Popularis Sinicae. Vol. 6: 3–127. Science Press, Beijing.

Xu K.-W., Zhang L., Rothfels C.J., Smith A.R., Viane R.L.L., Lorence D., Wood K.R., Chen C.-W., Knapp R., Zhou L., Lu N.T., Zhou X.-M., Wei H.-J., Fan Q., Chen S.-F., Cicuzza D., Gao X.-F., Liao W.-B. & Zhang L.-B. 2020. A global plastid phylogeny of the fern genus Asplenium (Aspleniaceae). Cladistics 36 (1): 22–71. https://doi.org/10.1111/cla.12384

Zhang D., Gao F., Jakovlić I., Zou H., Zhang J., Li W.-X. & Wang G.-T. 2020. PhyloSuite: an integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20 (1): 348–355. https://doi.org/10.1111/1755-0998.13096

Published
2022-03-07
How to Cite
Xu, K.-W., Lin, C.-X., Guo, J.-Q., Zhou, X.-X., Liao, W.-B., & Mao, L.-F. (2022). Asplenium danxiaense sp. nov. (Aspleniaceae, Aspleniineae), a new tetraploid fern species from Guangdong, China, based on morphological and molecular data. European Journal of Taxonomy, 798(1), 162-173. https://doi.org/10.5852/ejt.2022.798.1679
Section
Research article