High alpine sorcerers: revision of the cave wētā genus Pharmacus Pictet & de Saussure (Orthoptera: Rhaphidophoridae: Macropathinae), with the description of six new species and three new subspecies
Abstract
The New Zealand alpine cave wētā genus Pharmacus was first described by Pictet & de Saussure (1893) as a monotypic taxon. Three species were added to the genus by Richards in 1972. Here we clarify the status and appearance of all known species of Pharmacus. Based on morphology and mtDNA sequences we determine that the species Pharmacus brewsterensis Richards, 1972 is better placed within the genus Notoplectron Richards, 1964. We also resolve the species Isoplectron cochleatum Karny, 1935 and show that it belongs to the genus Pharmacus. Additionally, we describe six new species and three new subspecies from the southern regions of South Island, New Zealand. We provide key traits and known distributions for all known species and subspecies in this alpine genus. New combinations: Pharmacus brewsterensis Richards, 1972 becomes Notoplectron brewsterense (Richards, 1972) comb. nov.; Isoplectron cochleatum Karny, 1935 becomes Pharmacus cochleatus (Karny, 1935) comb. nov. New species and subspecies: Pharmacus cochleatus rawhiti subsp. nov., Pharmacus cochleatus fiordensis subsp. nov., Pharmacus cochleatus nauclerus subsp. nov., Pharmacus concinnus sp. nov., Pharmacus cristatus sp. nov., Pharmacus notabilis sp. nov., Pharmacus perfidus sp. nov., Pharmacus senex sp. nov. and Pharmacus vallestris sp. nov. New synonyms: Pharmacus dumbletoni Richards, 1972 = Pharmacus montanus Pictet & de Saussure, 1893 syn. nov.; Pharmacus chapmanae Richards, 1972 = Pharmacus cochleatus (Karny, 1935) syn. nov.
References
Allegrucci G., Todisco V. & Sbordoni V. 2005. Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. Molecular Phylogenetics and Evolution 37 (1): 153–164. https://doi.org/10.1016/j.ympev.2005.04.022
Allegrucci G., Trewick S.A., Fortunato A., Carchini G. & Sbordoni V. 2010. Cave crickets and cave weta (Orthoptera, Rhaphidophoridae) from the southern end of the world: a molecular phylogeny test of biogeographical hypotheses. Journal of Orthoptera Research 19 (1): 121–130. https://doi.org/10.1665/034.019.0118
Boessenkool S., Star B., Scofield R.P., Seddon P.J. & Waters J.M. 2010. Lost in translation or deliberate falsification? Genetic analyses reveal erroneous museum data for historic penguin specimens. Proceedings of the Royal Society B 277 (1684): 1057–1064. https://doi.org/10.1098/rspb.2009.1837
Butts C.A. 1983. The Biologies of Two Species of Wētā Endemic to the Snares Islands: Zealandrosandrus subantarcticus Salmon (Orthoptera: Stenopelmatidae) and Insulanoplectron spinosum Richards (Orthoptera: Rhaphidophoridae). Unpublished BSc thesis, University of Canterbury, New Zealand.
Carchini G., Rampini M. & Sbordoni V. 1994. Life cycle and population ecology of the cave cricket Dolichopoda geniculata (Costa) from Valmarino Cave (Central Italy). International Journal of Speleology 23 (3–4): 203–218. https://doi.org/10.5038/1827-806X.23.3.6
Chinn W.G.H. & Chinn T.J.H. 2020. Tracking the snow line: responses to climate change by New Zealand alpine invertebrates. Arctic, Antarctic, and Alpine Research 52 (1): 361–389. https://doi.org/10.1080/15230430.2020.1773033
Cook L.D., Trewick S.A., Morgan-Richards M. & Johns P.M. 2010. Status of the New Zealand cave weta (Rhaphidophoridae) genera Pachyrhamma, Gymnoplectron and Turbottoplectron. Invertebrate Systematics 24 (2): 131–138. https://doi.org/10.1071/IS09047
Cronin M.A., Bodkin J., Ballachey B., Estes J. & Patton J.C. 1996. Mitochondrial-DNA variation among subspecies and populations of sea otters (Enhydra lutris). Journal of Mammalogy 77 (2): 546–557. https://doi.org/10.2307/1382828
Crosby T.K., Dugdale J.S. & Watt J.C. 1998. Area codes for recording specimen localities in the New Zealand subregion. New Zealand Journal of Zoology 25 (2): 175–183. https://doi.org/10.1080/03014223.1998.9518148
Crowe A. 2002. Which New Zealand Insect? Penguin Books (NZ) Ltd, North Shore, New Zealand.
Dellicour S. & Flot J.-F. 2015. Delimiting species – poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Systematic Biology 64 (6): 900–908. https://doi.org/10.1093/sysbio/syu130
Dumbleton L.J. 1935. The Alpine Weta. New Zealand Alpine Journal 6 (22): 172.
Dumbleton L.J. 1952. Notes on insects. New Zealand Entomologist 1 (2): 14–15. https://doi.org/10.1080/00779962.1952.9722706
Fitness J.L., Morgan-Richards M., Ball O.-P., Godfrey A.J.R. & Trewick S.A. 2015. Improved resolution of cave weta diversity (Orthoptera: Rhaphidophoridae): ecological implications for Te Paki, Far North, New Zealand. New Zealand Journal of Zoology 42 (1): 1–16. https://doi.org/10.1080/03014223.2014.983939
Fitness J.L., Morgan-Richards M., Hegg D. & Trewick S.A. 2018. Reinstatement of the New Zealand cave wētā genus Miotopus Hutton (Orthoptera: Rhaphidophoridae: Macropathinae) and description of a new species. European Journal of Taxonomy 468: 1–24. https://doi.org/10.5852/ejt.2018.468
Folmer O., Black M., Hoeh W. & Lutz R.V.R. 1994. DNA primers for the amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294–299.
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59 (3): 307–321. https://doi.org/10.1093/sysbio/syq010
Guppy C.S. 1986. The adaptive significance of alpine melanism in the butterfly Parnassius phoebus F. (Lepidoptera: Papilionidae). Oecologia 70 (2): 205–213. https://doi.org/10.1007/BF00379241
Hall-Jones J. 1976. Fiordland Explored. Craig Printing Co Ltd, Invercargill, New Zealand.
Harris R.M., McQuillan P. & Hughes L. 2013. A test of the thermal melanism hypothesis in the wingless grass-hopper Phaulacridium vittatum. Journal of Insect Science 13 (51): 1–18. https://doi.org/10.1673/031.013.5101
Hegg D., Morgan-Richards M. & Trewick S.A. 2019. Diversity and distribution of Pleioplectron Hutton cave wētā (Orthoptera: Rhaphidophoridae: Macropathinae), with the synonymy of Weta Chopard and the description of seven new species. European Journal of Taxonomy 577: 1–46. https://doi.org/10.5852/ejt.2019.577
Hutton F.W. 1896. The Stenopelmatidae of New Zealand. Transactions of the New Zealand Institute 29 (14): 223–240.
Hutton F.W. 1898. Supplement to the Stenopelmatidae of New Zealand. Transactions and Proceedings of the New Zealand Institute 31 (3): 40–43.
ICZN (International Commission on Zoological Nomenclature) 1999. International Code of Zoological Nomenclature. 4th Edition. The International Trust for Zoological Nomenclature 1999, The Natural History Museum. Available from https://www.iczn.org/the-code/the-code-online/ [accessed 30 Aug. 2021].
JASP Team 2020. JASP (Version 0.13.1). University of Amsterdam, The Netherlands. Available from https://jasp-stats.org/ [accessed 30 Aug. 2021].
Johns P.M. & Cook L.D. 2013. Maotoweta virescens new genus and new species; hidden in a moss forest (Orthoptera: Rhaphidophoridae). Records of the Canterbury Museum 27: 11–17.
Karny H. 1935. Die Gryllacrididen des Pariser Museum und der Collection L. Chopard. Eos 10 (3–4): 383–385.
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
King K.J. & Sinclair B.J. 2015. Water loss in tree weta (Hemideina): adaptation to the montane environment and a test of the melanisation-desiccation resistance hypothesis. The Journal of Experimental Biology 218 (13): 1995–2004. https://doi.org/10.1242/jeb.118711
Köhler G., Samietz J. & Schielzeth H. 2017. Morphological and colour morph clines along an altitudinal gradient in the meadow grasshopper Pseudochorthippus parallelus. PloS One 12 (12): e0189815. https://doi.org/10.1371/journal.pone.0189815
Koot E.M., Morgan-Richards M. & Trewick S.A. 2020. An alpine grasshopper radiation older than the mountains, on Kā Tiritiri o te Moana (Southern Alps) of Aotearoa (New Zealand). Molecular Phylogenetics and Evolution 147: 1–19. https://doi.org/10.1016/j.ympev.2020.106783
Lavoie K.H., Helf K.L. & Poulson T.L. 2007. The biology and ecology of North American cave crickets. Journal of Cave and Karst Studies 69 (1): 114–134.
Liu S., Lorenzen E.D., Fumagalli M., Li B., Harris K., Xiong Z., Zhou L., Korneliussen T.S., Somel M., Babbitt C., Wray G., Li J., He W., Wang Z., Fu W., Xiang X., Morgan C.C., Doherty A., O’Connell M.J., McInerney J.O., Born E.W., Dalén L., Dietz R., Orlando L., Sonne C., Zhang G., Nielsen R., Willerslev E. & Wang J. 2014. Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 157 (4): 785–794. https://doi.org/10.1016/j.cell.2014.03.054
Mallet J. 1995. A species definition for the modern synthesis. Trends in Ecology and Evolution 10 (7): 294–299. https://doi.org/10.1016/0169-5347(95)90031-4
Mallet J. 2013a. Subspecies, semispecies, superspecies. In: Levin S.A. (ed.) Encyclopedia of Biodiversity, 2nd Edition, Vol. 1: 45–48. Academic Press, Waltham, MA, USA. https://doi.org/10.1016/B978-0-12-384719-5.00138-6
Mallet J. 2013b. Concepts of species. In: Levin S.A. (ed.) Encyclopedia of Biodiversity, 2nd Edition, Vol. 6: 679–691. Academic Press, Waltham, MA, USA. https://doi.org/10.1016/B978-0-12-384719-5.00131-3
Mark A.F., Dickinson K.J.M., Patrick B.H., Barratt B.I.P., Loh G., McSweeney G.D., Meurk C.D., Timmins S.M., Simpson N.C. & Wilson J.B. 1989. An ecological survey of the central part of the Eyre Ecological District, northern Southland, New Zealand. Journal of the Royal Society of New Zealand 19 (4): 349–384. https://doi.org/10.1080/03036758.1989.10421841
McClymont W.G. 1959. The Exploration of New Zealand. 2nd Edition. Oxford University Press, London, UK.
Meads M. & Notman P. 1992. Survey of the status of three species of Giant Wetas (Deinacrida) on Seaward and Inland Kaikoura Ranges. DSIR Land Resources Technical Record 89: 1–35.
Miller J.M., Hallager S., Monfort S.L., Newby J., Bishop K., Tidmus S.A., Black P., Houston B., Matthee C.A. & Fleischer R.C. 2011. Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus). Conservation Genetics 12: 423–431. https://doi.org/10.1007/s10592-010-0149-x
Monroe B.L. 1982. A modern concept of the subspecies. The Auk 99 (3): 608−609.
Morgan-Richards M., Bulgarella M., Sivyer L., Dowle E.J., Hale M., McKean N.E. & Trewick S.A. 2017. Explaining large mitochondrial sequence differences within a population sample. Royal Society Open Science 4 (11): e170730. https://doi.org/10.1098/rsos.170730
Novis P.M. 2002. New records of snow algae for New Zealand, from Mt Philistine, Arthur’s Pass National Park. New Zealand Journal of Botany 40 (2): 297–312. https://doi.org/10.1080/0028825X.2002.9512789
Parkash R. 2010. Testing the melanism-desiccation hypothesis: a case study in Darwinian evolution. In: Sharma V.P. (ed.) Nature at Work: Ongoing Saga of Evolution: 279–306. Springer, New Delhi, India. https://doi.org/10.1007/978-81-8489-992-4_18
Pictet A. & de Saussure H. 1893. De quelques orthoptères nouveaux. Mitteilungen der Schweizerischen Entomologischen Gesellschaft 8: 293–318.
Ramsay G.W. 1978. Seasonality in New Zealand Orthoptera. The New Zealand Entomologist 6 (4): 357–358. https://doi.org/10.1080/00779962.1978.9722288
Richards A.M. 1959. Revision of the Rhaphidophoridae (Orthoptera) of New Zealand – Part V. The genus Pleioplectron Hutton, 1897. Transactions of the Royal Society of New Zealand 87: 319–327. Available from https://paperspast.natlib.govt.nz/periodicals/TPRSNZ1959-87.2.6.16 [accessed 30 Aug. 2021].
Richards A. M. 1961. The life history of some species of Rhaphidophoridae (Orthoptera). Transactions of the Royal Society of New Zealand – Zoology 1 (9): 121–137. Available from https://paperspast.natlib.govt.nz/periodicals/TRSZOO19610916.2.2 [accessed 30 Aug. 2021].
Richards A.M. 1964. Insects of Campbell Island. Orthoptera: Rhaphidophoridae of Auckland and Campbell Islands. Pacific Insects Monographs 7: 216–225.
Richards A.M. 1970. Observations of the biology of Pallidotettix nullarborensis Richards (Orthoptera: Rhaphidophoridae) from the Nullabar Plain. Proceedings of the Linnean Society of New South Wales 94 (3): 195–206.
Richards A.M. 1972. Revision of the Rhaphidophoridae (Orthoptera) of New Zealand- Part XIV. Three alpine genera from the South Island. Journal of the Royal Society of New Zealand 2 (2): 151–174. https://doi.org/10.1080/03036758.1972.10429371
Roland J. 1982. Melanism and diel activity of alpine Colias (Lepidoptera: Pieridae). Oecologia 53: 214–221. https://doi.org/10.1007/BF00545666
Simon C., Frati F., Beckenbach A., Crespi B.J., Liu H. & Flook P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87 (6): 651–701. https://doi.org/10.1093/aesa/87.6.651
Sinclair B.J. & Chown S.L. 2005. Climatic variability and hemispheric differences in insect cold tolerance: support from southern Africa. Functional Ecology 19 (2): 214–221. https://doi.org/10.1111/j.1365-2435.2005.00962.x
Sinclair B.J., Worland M.R. & Wharton D.A. 1999. Ice-nucleation and freezing tolerance in New Zealand alpine and lowland weta, Hemideina spp. (Orthoptera: Stenopelmatidae). Physiological Entomology 24 (1): 56–63. https://doi.org/10.1046/j.1365-3032.1999.00112.x
Sinclair B.J., Addo-Bediako A. & Chown S.L. 2003. Climatic variability and the evolution of insect freeze tolerance. Biological Reviews 78 (2):181–195. https://doi.org/10.1017/S1464793102006024
Slatkin M. & Hudson R.R. 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129 (2): 555–562. https://doi.org/10.1093/genetics/129.2.555
Sutherland O.R.W. 1964. Alpine wetas in New Zealand. New Zealand Entomologist 3 (3): 16–17. https://doi.org/10.1080/00779962.1964.9722822
Sweney W.J. 1980. Insects of Mount Cook National Park. Unpublished MSc thesis, Agricultural Science, University of Canterbury.
Trewick S.A. & Morgan-Richards M. 2005. After the deluge: mitochondrial DNA indicates Miocene radiation and Pliocene adaptation of tree and giant weta (Orthoptera: Anostostomatidae). Journal of Biogeography 32 (2): 295–309. https://doi.org/10.1111/j.1365-2699.2004.01179.x
Vargo L.J., Anderson B.M., Dadić R., Horgan H.J., Mackintosh A.N., King A.D. & Lorrey A.M. 2020. Anthropogenic warming forces extreme annual glacier mass loss. Nature Climate Change 10: 856–861. https://doi.org/10.1038/s41558-020-0849-2
Verry A.J.F., Scarsbrook L., Scofield R.F., Tennyson A.J.D., Weston K.A., Robertson B.C. & Rawlence N.J. 2019. Who, where, what, wren? Using ancient DNA to examine the veracity of museum specimen data: a case study of the New Zealand rock wren (Xenicus gilviventris). Frontiers in Ecology and Evolution 7: 496. https://doi.org/10.3389/fevo.2019.00496
Walker A.K. 1977. A unique high alpine insect. New Zealand Alpine Journal 30: 96–97.
Wallis G.P., Waters J.M., Upton P. & Craw D. 2016. Transverse alpine speciation driven by glaciation. Trends in Ecology & Evolution 31 (12): 916–926. https://doi.org/10.1016/j.tree.2016.08.009
Wang K., Lenstra J.A., Liu L., Hu Q., Ma T., Qiu Q. & Liu J. 2018. Incomplete lineage sorting rather than hybridization explains the inconsistent phylogeny of the wisent. Communications Biology 1: 169. https://doi.org/10.1038/s42003-018-0176-6
Ward D.F. 1997. A new generic key to the New Zealand cave weta genera (Orthoptera: Rhaphidophoridae). New Zealand Natural Sciences 23: 13–17.
Weston K.A. & Robertson B.C. 2015. Population structure within an alpine archipelago: strong signature of past climate change in the New Zealand rock wren (Xenicus gilviventris). Molecular Ecology 24 (18): 4778–4794. https://doi.org/10.1111/mec.13349
Wharton D.A. 2011. Cold tolerance of New Zealand alpine insects. Journal of Insect Physiology 57 (8): 1090–1095. https://doi.org/10.1016/j.jinsphys.2011.03.004
Willsman A., Chinn T. & Macara G. 2015. New Zealand Glacier Monitoring: End of Summer Snowline Survey 2015. Report published by the National Institute of Water & Atmospheric Research Ltd, Dunedin, New Zealand.
Wittkopp P.J., Smith-Winberry G., Arnold L.L., Thompson E.M., Cooley A.M., Yuan D. C., Song Q. & McAllister B.F. 2011. Local adaptation for body color in Drosophila americana. Heredity 106: 592–602. https://doi.org/10.1038/hdy.2010.90
Yassin A., Markow T.A., Narechania A., O’Grady P.M. & DeSalle R. 2010. The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Molecular Phylogenetics and Evolution 57 (2): 509–517. https://doi.org/10.1016/j.ympev.2010.08.020
Copyright (c) 2022 Danilo Hegg, Mary Morgan-Richards, Steven A. Trewick
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.