Addition to Sweden’s freshwater sponge fauna and a phylogeographic study of Spongilla lacustris (Spongillida, Porifera) in southern Sweden

  • Chloé Robert Dept. Organismal Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
  • Raquel Pereira Dept. Organismal Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
  • Mikael Thollesson Dept. Organismal Biology, Uppsala University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden https://orcid.org/0000-0002-0957-0515
Keywords: Spongillida, phylogeography, bar coding, EPIC marker, freshwater

Abstract

Freshwater sponges constitute an overlooked part of the freshwater fauna in Sweden and there has been no recent systematic survey. Hitherto three species have been found in Sweden: Spongilla lacustris (Linnaeus, 1759), Ephydatia fluviatilis (Linnaeus, 1759) and E. muelleri (Lieberkühn, 1856). Neighbouring countries (Norway, Denmark, Estonia) harbour at least one additional species. We present a study on freshwater sponge diversity and distribution in the southern half of Sweden. We hypothesized dispersal within catchments to be less constrained than between, even at shorter intercatchment than intracatchment distances, and, as result, genetic distances being greater between than within catchments. We collected and identified freshwater sponges from 34 sites, using morphological and molecular data (coxI, 28S rRNA gene). We can report the presence of Eunapius fragilis (Leidy, 1851) in Sweden for the first time, and that S. lacustris is the most abundant and widely distributed freshwater sponge in Sweden. Genetic markers were tested on S. lacustris individuals for a phylogeographic study. From the 47 primers (24 markers), one pair presented successful amplification and enough variation for phylogeographic studies – i56, an intron located in a conserved gene. Seven different variants were found in the sampling area, but no clear population structure was observed.

References

Addis J.S. & Peterson K.J. 2005. Phylogenetic relationships of freshwater sponges (Porifera, Spongillina) inferred from analyses of 18S rDNA, COI mtDNA, and ITS2 rDNA sequences. Zoologica Scripta 34 (6): 549–557. https://doi.org/10.1111/j.1463-6409.2005.00211.x

Andjus S., Nikolic N., Dobricic V., Marjanovic A., Gacic Z., Brankovic G., Rakovic M. & Paunovic M. 2017. Contribution to the knowledge on the distribution of freshwater sponges – the Danube and Sava rivers case study. Journal of Limnology 77 (2): 199–208. https://doi.org/10.4081/jlimnol.2017.1677

Arndt W. 1932. Die Süsswasserschwammfauna Schwedens, Finnlands und Dänemarks. Arkiv för Zoologi 24A (3): 1–33.

Avise J.C., Arnold J., Ball R.M., Bermingham E., Lamb T., Neigel J.E., Reeb C.A. & Saunders N.C. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18 (1): 489–522. https://doi.org/10.1146/annurev.es.18.110187.002421

Becking L.E., Erpenbeck D., Peijnenburg K.T.C.A. & de Voogd N.J. 2013. Phylogeography of the sponge Suberites diversicolor in Indonesia: insights into the evolution of marine lake populations. PLoS ONE 8 (10): e75996. https://doi.org/10.1371/journal.pone.0075996

Boury-Esnault N. & Rützler K. 1997. Thesaurus of sponge morphology. Smithsonian Contributions to Zoology 596: 1–55. https://doi.org/10.5479/si.00810282.596

Burland T.G. 1999. DNASTAR’s Lasergene Sequence Analysis Software. In: Misener S. & Krawetz S.A. (eds) Bioinformatics Methods and Protocols: 71–91. Methods in Molecular Biology 132, Humana Press, Totowa, NJ. https://doi.org/10.1385/1-59259-192-2:71

Chenuil A., Hoareau T.B., Egea E., Penant G., Rocher C., Aurelle D., Mokhtar-Jamai K., Bishop J.D.D., Boissin E., Diaz A., Krakau M., Luttikhuizen P.C., Patti F.P., Blavet N. & Mousset S. 2010. An efficient method to find potentially universal population genetic markers, applied to metazoans. BMC Evolutionary Biology 10 (1): e276. https://doi.org/10.1186/1471-2148-10-276

Davey J.W. & Blaxter M.L. 2010. RADSeq: next-generation population genetics. Briefings in Functional Genomics 9 (5–6): 416–423. https://doi.org/10.1093/bfgp/elq031

de Voogd N.J., Alvarez B., Boury-Esnault N., Carballo J.L., Cárdenas P., Díaz M.C., Dohrmann M., Downey R.V., Hajdu E., Hooper J.N.A., Kelly M., Klautau M., Manconi R., Morrow C.C., Pisera A.B., Rios P., Rützler K., Schönberg C.H.L., Vacelet J. & Soest R.V. undated. World Porifera Database. Available from http://marinespecies.org/porifera [accessed 10 Feb. 2021]. https://doi.org/10.14284/359

Dice L.R. 1945. Measures of the amount of ecologic association between species. Ecology 26 (3): 297–302. https://doi.org/10.2307/1932409

Dröscher I. & Waringer J. 2007. Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshwater Biology 52 (6): 998–1008. https://doi.org/10.1111/j.1365-2427.2007.01747.x

Duran S., Giribet G. & Turon X. 2004. Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Molecular Ecology 13 (1): 109–122. https://doi.org/10.1046/j.1365-294X.2003.02022.x

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32 (5): 1792–1797. https://doi.org/10.1093/nar/gkh340

Eklund A. 2010. Sveriges vattendrag. SMHI Faktablad 44.

Evans K.L. & Montagnes D.J.S. 2019. Freshwater sponge (Porifera: Spongillidae) distribution across a landscape: environmental tolerances, habitats, and morphological variation. Invertebrate Biology 138 (3): e440. https://doi.org/10.1111/ivb.12258

Excoffier L., Laval G. & Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1 (1): e47. https://doi.org/10.1177/117693430500100003

Folkers M. & Rombouts T. 2019. Sponges revealed: a synthesis of their overlooked ecological function within aquatic ecosystems. In: Jungblut S., Liebich V. & Bode-Dalby M. (eds) YOUMARES 9 – The Oceans Our Research, Our Future: 181–193. Springer, Cham, Switzerland. https://doi.org/10.1007/978-3-030-20389-4_9

Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3 (5): 294–299.

Frost T.M., De Nagy G.S. & Gilbert J.J. 1982. Population dynamics and standing biomass of the freshwater sponge Spongilla lacustris. Ecology 63 (5): 1203–1210. https://doi.org/10.2307/1938844

Gérard K., Guilloton E., Arnaud-Haond S., Aurelle D., Bastrop R., Chevaldonné P., Derycke S., Hanel R., Lapègue S., Lejeusne C., Mousset S., Ramšak A., Remerie T., Viard F., Féral J.P. & Chenuil A. 2013. PCR survey of 50 introns in animals: cross-amplification of homologous EPIC loci in eight non-bilaterian, protostome and deuterostome phyla. Marine Genomics 12 (C): 1–8. https://doi.org/10.1016/j.margen.2013.10.001

Håkanson L. 1994. How many lakes are there in Sweden? Geografiska Annaler: Series A, Physical Geography 76 (3): 203–205. https://doi.org/10.1080/04353676.1994.11880418

Hasegawa M., Kishino H. & Yano T. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22 (2): 160–174. https://doi.org/10.1007/BF02101694

Huson D.H. & Bryant D. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23 (2): 254–267. https://doi.org/10.1093/molbev/msj030

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30 (22): 3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Leidy J. 1851. On Spongilla. Proceedings of the Academy of Natural Sciences of Philadelphia 5: 278.

Leigh J.W. & Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6 (9): 1110–1116. https://doi.org/10.1111/2041-210X.12410

Lieberkühn N. 1856. Zusätze zur Entwicklungsgeschichte der Spongillen. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin 1856: 496–514.

Linnaeus C. 1759. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata. Vol. 2. Laurentii Salvii, Stockholm [Holmiae]. https://doi.org/10.5962/bhl.title.542

Lopp A., Reintamm T., Vallmann K., Päri M., Mikli V., Richelle-Maurer E. & Kelve M. 2007. Molecular identification, characterization and distribution of freshwater sponges (Porifera: Spongillidae) in Estonia. Fundamental and Applied Limnology / Archiv für Hydrobiologie 168 (1): 93–103. https://doi.org/10.1127/1863-9135/2007/0168-0093

Lucentini L., Gigliarelli L., Puletti M.E., Palomba A., Caldelli A., Fontaneto D. & Panara F. 2013. Spatially explicit genetic structure in the freshwater sponge Ephydatia fluviatilis (Linnaeus, 1759) within the framework of the monopolisation hypothesis. Journal of Limnology 72 (1): e14. https://doi.org/10.4081/jlimnol.2013.e14

Madden T. 2013. Chapter 16. The BLAST sequence analysis tool. In: The NCBI Handbook, 2nd Ed.: 1–15. National Center for Biotechnology Information (NCBI), Bethesda, MD. Available from https://www.ncbi.nlm.nih.gov/books/NBK153387/ [accessed 7 Jun. 2022].

Manconi R. & Pronzato R. 2007. Gemmules as a key structure for the adaptive radiation of freshwater sponges: a morpho-functional and biogeographical study. In: Custódio M.R., Lôbo-Hajdu G., Hajdu E. & Muricy G. (eds) Porifera Research: Biodiversity, Innovation and Sustainability. Proceedings of the 7th International Sponge Symposium: 61–77. Museu Nacional, Rio de Janeiro.

Manconi R. & Pronzato R. 2008. Global diversity of sponges (Porifera: Spongillina) in freshwater. Hydrobiologia 595 (1): 27–33. https://doi.org/10.1007/s10750-007-9000-x

Manconi R. & Pronzato R. 2016. How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia 782 (1): 11–22. https://doi.org/10.1007/s10750-016-2714-x

McCormack G. & Kelly M. 2002. New indications of the phylogenetic affinity of Spongosorites suberitoides Diaz et al., 1993 (Porifera, Demospongiae) as revealed by 28S ribosomal DNA. Journal of Natural History 36 (9): 1009–1021. https://doi.org/10.1080/00222930110040394

Morrow C.C., Picton B.E., Erpenbeck D., Boury-Esnault N., Maggs C.A. & Allcock A.L. 2011. Congruence between nuclear and mitochondrial genes in Demospongiae: a new hypothesis for relationships within the G4 clade (Porifera: Demospongiae). Molecular Phylogenetics and Evolution 62 (1): 174–190. https://doi.org/10.1016/j.ympev.2011.09.016

Nichols S. & Barnes P. 2005. A molecular phylogeny and historical biogeography of the marine sponge genus Placospongia (Phylum Porifera) indicate low dispersal capabilities and widespread crypsis. Journal of Experimental Marine Biology and Ecology 323 (1): 1–15. https://doi.org/10.1016/j.jembe.2005.02.012

Økland K.A. & Økland J. 1996. Freshwater sponges (Porifera: Spongillidae) of Norway: distribution and ecology. Hydrobiologia 330 (1): 1–30. https://doi.org/10.1007/BF00020819

Pasnin O., Voigt O., Wörheide G., Rincón A.P.M. & Heyden S. von der. 2020. Indo-Pacific phylogeo-graphy of the lemon sponge Leucetta chagosensis. Diversity 12 (12): 466. https://doi.org/10.3390/d12120466

Penney J.T. & Racek A. 1968. Comprehensive revision of a worldwide collection of freshwater sponges (Porifera, Spongillidae). Bulletin of the United States National Museum 272: 1–184. https://doi.org/10.5479/si.03629236.272.1

Pronzato R. & Manconi R. 2001. Atlas of European freshwater sponges. Annali del Museo civico di Storia naturale di Ferrara 4: 3–64.

QGIS Development Team 2016. QGIS Geographic Information System. Available from https://www.qgis.org/en/site/ [accessed 7 Jun. 2022].

Ricciardi A. 2015. Chapter 5 – Ecology of invasive alien invertebrates. In: Thorp J.H. & Rogers D.C. (eds) Thorp and Covich’s Freshwater Invertebrates 4th Ed.: 83–91. Elsevier. https://doi.org/10.1016/B978-0-12-385026-3.00005-X

Richelle E., Degoudenne Y., Dejonghe L. & van de Vyer G. 1995. Experimental and field studies on the effect of selected heavy metals on three freshwater sponge species: Ephydatia fluviatilis, Ephydatia muelleri and Spongilla lacustris. Archiv für Hydrobiologie 135 (2): 209–231. https://doi.org/10.1127/archiv-hydrobiol/135/1995/209

Richelle-Maurer E., Degoudenne Y., van de Vyer G. & Dejonghe L. 1994. Some aspects of the ecology of Belgian freshwater sponges. In: van Soest R.W.M., van Kempen T.M.G. & Braekman J.-C. (eds) Sponges in Time and Space: 341–350. A.A. Balkema, Rotterdam.

SCB undated. Marken i Sverige. Available from https://www.scb.se/hitta-statistik/sverige-i-siffror/miljo/marken-i-sverige/ [accessed 10 Feb. 2021].

Schröder H.C., Efremova S.M., Itskovich V.B., Belikov S., Masuda Y., Krasko A., Müller I.M. & Müller W.E.G. 2003. Molecular phylogeny of the freshwater sponges in Lake Baikal. Journal of Zoological Systematics and Evolutionary Research 41 (2): 80–86. https://doi.org/10.1046/j.1439-0469.2003.00199.x

SLU Artdatabanken undated. Dyntaxa. Available from https://www.dyntaxa.se/ [accessed 10 Feb. 2021].

Sørensen T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons. Kongelige Danske Videnskabernes Selskab 5 (4): 1–34.

Swierts T., Peijnenburg K.T.C.A., Leeuw C.A., Breeuwer J.A.J., Cleary D.F.R. & Voogd N.J. 2017. Globally intertwined evolutionary history of giant barrel sponges. Coral Reefs 36 (3): 933–945. https://doi.org/10.1007/s00338-017-1585-6

Swofford D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer Associates, Sunderland, MA.

Tendal O.S. 1967a. On the freshwater sponges of Denmark. Videnskabelige Meddelelser fra Dansk naturhistorisk Forening i Kjøbenhavn 130: 173–178.

Tendal O.S. 1967b. Ferskvandsvampe (Spongillidae) i Thy. Flora og Fauna 73 (2): 63–67.

Troia A. 2016. Dispersal and colonization in heterosporous lycophytes: palynological and biogeographical notes on the genus Isoetes in the Mediterranean region. Webbia 71 (2): 277–281. https://doi.org/10.1080/00837792.2016.1191171

Westman Y., Olsson H., Pettersson O., Wingqvist E.-M. & Björkert D. 2017. Arbete med SVAR version 2016, Svenskt Vattenarkiv, en databas vid SMHI: 1–55. SMHI (Swedish Meterological and Hydrological Institute), Norrköping, Sweden.

Williams J.G.K., Kubelik A.R., Livak K.J., Rafalski J.A. & Tingey S.V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research 18 (22): 6531–6535. https://doi.org/10.1093/nar/18.22.6531

Winnepenninckx B., Backeljau T. & de Wachter R. 1993. Extraction of high molecular weight DNA from molluscs. Trends in Genetics 9 (12): 407. https://doi.org/10.1016/0168-9525(93)90102-N

Wörheide G., Hooper J.N.A. & Degnan B. 2002. Phylogeography of western Pacific Leucetta ‘chagosensis’ (Porifera: Calcarea) from ribosomal DNA sequences: implications for population history and conservation of the Great Barrier Reef World Heritage Area (Australia). Molecular Ecology 11 (9): 1753–1768. https://doi.org/10.1046/j.1365-294X.2002.01570.x

Published
2022-07-13
How to Cite
Robert, C., Pereira, R., & Thollesson, M. (2022). Addition to Sweden’s freshwater sponge fauna and a phylogeographic study of Spongilla lacustris (Spongillida, Porifera) in southern Sweden. European Journal of Taxonomy, 828(1), 138–167. https://doi.org/10.5852/ejt.2022.828.1861
Section
Research article