A huge undescribed diversity of the subgenus Hystricochaetonotus (Gastrotricha, Chaetonotidae, Chaetonotus) in Central Europe

Keywords: compensatory base changes, cytochrome c oxidase, meiofauna, rDNA cistron, RNA secondary structure, Slovakia

Abstract

The subgenus Hystricochaetonotus Schwank, 1990 is one of the most species-rich subgenera of Chaetonotus Ehrenberg, 1830. It has a worldwide distribution and encompasses 37 species predominantly living in the benthos and periphyton of limnetic habitats. We have discovered further nine new species in running and stagnant waters in Slovakia (Central Europe): Ch. (H.) arcanus sp. nov., Ch. (H.) avarus sp. nov., Ch. (H.) gulosus sp. nov., Ch. (H.) iratus sp. nov., Ch. (H.) luxus sp. nov., Ch. (H.) mirabilis sp. nov., Ch. (H.) optabilis sp. nov., Ch. (H.) slavicus sp. nov., and Ch. (H.) superbus sp. nov. Their morphology was studied using differential interference contrast microscopy and subsequent morphometric analyses were carried out. In addition, the primary and secondary structures of their 18S, ITS2, and 28S rRNA molecules as well as their barcoding mitochondrial gene encoding for cytochrome c oxidase (COI) were analyzed. Species boundaries were tested also using the compensatory base change analysis. The new species could be well separated both morphologically and molecularly. The present barcoding analyses revealed that the nuclear ITS2 sequences represent a powerful DNA barcode in addition to the mitochondrial COI gene. According to the multi-gene phylogenetic analyses, the lineage leading to the last common ancestor of the ‘Hystricochaetonotus’ clade is the longest internal branch within the family Chaetonotidae Gosse, 1864. Since members of the subgenus Hystricochaetonotus are morphologically highly heterogeneous, parallel evolution of Chaetonotus-like and/or Hystricochaetonotus-like characters of scales and spines occurred during its radiation.

References

Appeltans W., Ahyong S.T., Anderson G., Angel M.V., Artois T., Bailly N., Bamber R., Barber A., Bartsch I., Berta A., Błażewicz-Paszkowycz M., Bock P., Boxshall G., Boyko C.B., Brandão S.N., Bray R.A., Bruce N.L., Cairns S.D., Chan T.Y., Cheng L., Collins A.G., Cribb T., Curini-Galletti M., Dahdouh-Guebas F., Davie P.J., Dawson M.N., De Clerck O., Decock W., De Grave S., de Voogd N.J., Domning D.P., Emig C.C., Erséus C., Eschmeyer W., Fauchald K., Fautin D.G., Feist S.W., Fransen C.H., Furuya H., Garcia-Alvarez O., Gerken S., Gibson D., Gittenberger A., Gofas S., Gómez-Daglio L., Gordon D.P., Guiry M.D., Hernandez F., Hoeksema B.W., Hopcroft R.R., Jaume D., Kirk P., Koedam N., Koenemann S., Kolb J.B., Kristensen R.M., Kroh A., Lambert G., Lazarus D.B., Lemaitre R., Longshaw M., Lowry J., Macpherson E., Madin L.P., Mah C., Mapstone G., McLaughlin P.A., Mees J., Meland K., Messing C.G., Mills C.E., Molodtsova T.N., Mooi R., Neuhaus B., Ng P.K., Nielsen C., Norenburg J., Opresko D.M., Osawa M., Paulay G., Perrin W., Pilger J.F., Poore G.C., Pugh P., Read G.B., Reimer J.D., Rius M., Rocha R.M., Saiz-Salinas J.I., Scarabino V., Schierwater B., Schmidt-Rhaesa A., Schnabel K.E., Schotte M., Schuchert P., Schwabe E., Segers H., Self-Sullivan C., Shenkar N., Siegel V., Sterrer W., Stöhr S., Swalla B., Tasker M.L., Thuesen E.V., Timm T., Todaro M.A., Turon X., Tyler S., Uetz P., van der Land J., Vanhoorne B., van Ofwegen L.P., van Soest R.W., Vanaverbeke J., Walker-Smith G., Walter T.C., Warren A., Williams G.C., Wilson S.P. & Costello M.J. 2012. The magnitude of global marine species diversity. Current Biology 22 (23): 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036

Astaloš B., Fenďa P., Gajdoš P., Krumpál M., Krumpálová Z., Mašán P., Mihál I., Pčola Š., Svatoň J. & Thomka V. 2003. Pavúkovce Národného parku Poloniny (Arachnida: Araneae, Pseudoscorpiones, Opiliones, Acari – Parasitiformes) [Arachnids of the Poloniny National Park (Arachnida: Araneae, Pseudoscorpiones, Opiliones, Acari – Parasitiformis)]. Štátna ochrana prírody SR & Správa Národného parku Poloniny, Banská Bystrica, Snina. [In Slovak.]

Balsamo M. 1983. Gastrotrichi. In: Consiglio Nazionale delle Ricerche (ed.) Guide per il Riconoscimento delle Specie animali delle Acque interne italiane 20: 1–92.

Balsamo M. 1990. Gastrotrichs from Lakes Bolsena, Chiusi and Montepulciano (central Italy), with the description of four new species. Bolletino di zoologia 57 (2): 165–178. https://doi.org/10.1080/11250009009355693

Balsamo M. & Todaro M.A. 1995. Gastrotricha from Trentino: the Viotte of Monte Bondone (Trento, Italy). Studi trentini di scienze naturali. Acta biologica 70: 9–22.

Balsamo M., d’Hondt J.-L., Kisielewski J. & Pierboni L. 2008. Global diversity of gastrotrichs (Gastrotricha) in freshwaters. Hydrobiologia 595 (1): 85–91. https://doi.org/10.1007/s10750-007-9006-4

Balsamo M., Pierboni L., Grilli P. & Plazi P. 2009. Taxonomic and nomenclatural notes on freshwater Gastrotricha. Zootaxa 2158 (1): 1–19. https://doi.org/10.11646/zootaxa.2158.1.1

Balsamo M., Grilli P., Guidi L. & d’Hondt J.-L. 2014. Gastrotricha. Biology, ecology and systematics. Families Dasydytidae, Dichaeturidae, Neogosseidae, Proichthydiidae. In: Dumont H.J.F. (ed.) Identification Guides to the Plankton and Benthos of Inland Waters, Volume 24: 1–187. Backhuys Publishers & Margraf Publishers, Weikersheim.

Balsamo M., d’Hondt J.-L., Kisielewski J., Todaro M., Tongiorgi P., Guidi L., Grilli P. & de Jong Y. 2015. Fauna Europaea: Gastrotricha. Biodiversity Data Journal 3: e5800. https://doi.org/10.3897/BDJ.3.e5800

Balsamo M., Artois T., Smith J.P., Todaro M.A., Guidi L., Leander B.S. & van Steenkiste N.W. 2020. The curious and neglected soft-bodied meiofauna: Rouphozoa (Gastrotricha and Platyhelminthes). Hydrobiologia 847: 2613–2644. https://doi.org/10.1007/s10750-020-04287-x

Bargues M.D., Marcilla A., Ramsey J.M., Dujardin J.P., Schofield C.J. & Mas-Coma C. 2000. Nuclear rDNA-based molecular clock of the evolution of Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Memórias do Instituto Oswaldo Cruz (Rio de Janeiro) 95 (4): 567–573. https://doi.org/10.1590/s0074-02762000000400020

Bosco I., Lourenço A.P., Guidi L., Balsamo M., Hochberg R. & Garraffoni A.R.S. 2020. Integrative description of a new species of Acanthodasys Remane, 1927 (Gastrotricha, Macrodasyida, Thaumastodermatidae) based on four distinct morphological techniques and molecular data. Zoologischer Anzeiger 286: 31–42. https://doi.org/10.1016/j.jcz.2020.03.003

Buchar J. 1983. Zoogeografie [Zoogeography]. Státní pedagogické nakladatelství, Praha. [In Czech.]

Cartopy 2014. Cartopy: a cartographic Python library with Matplotlib support. Met Office, Exeter, UK.

Cerca J., Purschke G. & Struck T.H. 2018. Marine connectivity dynamics: clarifying cosmopolitan distributions of marine interstitial invertebrates and the meiofauna paradox. Marine Biology 165 (8): e123. https://doi.org/10.1007/s00227-018-3383-2

Chakravorty S., Helb D., Burday M., Connell N. & Alland D. 2007. A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. Journal of Microbiological Methods 69 (2): 330–339. https://doi.org/10.1016/j.mimet.2007.02.005

Coleman A.W. 2003. ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics 19 (7): 370–375. https://doi.org/10.1016/S0168-9525(03)00118-5

Coleman A.W. 2007. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Research 35 (10): 3322–3329. https://doi.org/10.1093/nar/gkm233

Coleman A.W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution 50 (1): 197–203. https://doi.org/10.1016/ j.ympev.2008.10.008

Crooks G.E., Hon G., Chandonia J.-M. & Brenner S.E. 2004. WebLogo: a sequence logo generator. Genome Research 14 (6): 1188–1190. https://doi.org/10.1101/gr.849004

Darty K., Denise A. & Ponty Y. 2009. VARNA: interactive drawing and editing of the RNA secondary structure. Bioinformatics 25 (15): 1974–1975. https://doi.org/10.1093/ bioinformatics/btp250

Degma P. 2018. Field and laboratory methods. In: Schill R.O. (ed.) Water Bears: The Biology of Tardigrades. Zoological Monographs 2: 349–369. https://doi.org/10.1007/978-3-319-95702-9

Elias R. & Hoksza D. 2017. TRAVeLer: a tool for template-based RNA secondary structure visualization. BMC Bioinformatics 18 (1): e487. https://doi.org/10.1186/s12859-017-1885-4

Garraffoni A.R.S. & Melchior M.P. 2015. New species and new records of freshwater Heterolepidoderma (Gastrotricha: Chaetonotidae) from Brazil with an identification key to the genus. Zootaxa 4057 (4): 551–568. https://doi.org/10.11646/zootaxa.4057.4.5

Garraffoni A.R.S., Araújo T.Q., Lourenço A.P., Guidi L. & Balsamo M. 2017. A new genus and new species of freshwater Chaetonotidae (Gastrotricha: Chaetonotida) from Brazil with phylogenetic position inferred from nuclear and mitochondrial DNA sequences. Systematics and Biodiversity 15 (1): 49–62. https://doi.org/10.1111/j.1463-6409.2012.00558.x

Garraffoni A.R.S., Araújo T.Q., Lourenço A.P., Guidi L. & Balsamo M. 2019a. Integrative taxonomy of a new Redudasys species (Gastrotricha: Macrodasyida) sheds light on the invasion of fresh water habitats by macrodasyids. Scientific Reports 9: e2067. https://doi.org/10.1038/s41598-018-38033-0

Garraffoni A.R.S., Kieneke A., Kolicka M., Corgosinho P.H.C., Prado J., Nihei S.S. & Freitas A.V.L. 2019b. ICZN Declaration 45: a remedy for the nomenclatural and typification dilemma regarding soft-bodied meiofaunal organisms? Marine Biodiversity 49: 2199–2207. https://doi.org/10.1007/s12526-019-00983-7

Geisler J.H. & Theodor J.M. 2009. Hippopotamus and whale phylogeny. Nature 458 (7236): E1–E4. https://doi.org/10.11646/10.1038/nature07776

Giere O. 2009. Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68661-3

Greuter A. 1917. Beiträge zur Systematik der Gastrotrichen in der Schweiz. Revue suisse de Zoologie 25: 35–76. Available from https://biodiversitylibrary.org/page/10710334 [accessed 1 Apr. 2022].

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hebert P.D.N., Cywinska A., Ball S.L. & deWaard J.R. 2003a. Biological identifications through DNA barcodes. Proceedings of the Royal Society B 270 (1512): 313–321. https://doi.org/10.1098/rspb.2002.2218

Hebert P.D.N., Ratnasingham S. & deWaard J.R. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B 270 (Supplement): S96–S99. https://doi.org/10.1098/rsbl.2003.0025

Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. 2018. UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35 (2): 518–522. https://doi.org/10.1093/molbev/msx281

Holecová M. & Franc V. 2001. Červený (ekosozologický) zoznam chrobákov (Coleoptera) Slovenska [Red (ecosozological) list of beetles (Coleoptera) of Slovakia]. In: Baláž D., Maglocký Š. & Marhold K. (eds) Červený zoznam rastlín a živočíchov Slovenska [Red list of plants and animals of Slovakia]. Ochrana prírody 20 (Supplement): 111–128. [In Slovak with English title translation and summary.]

Hummon W.D., Balsamo M. & Todaro M.A. 1992. Italian marine Gastrotricha: I. Six new and one redescribed species of Chaetonotida. Bollettino di Zoologia 59 (4): 499–516. https://doi.org/10.1080/11250009209386711

Hunter J.D. 2007. Matplotlib: a 2D graphics environment. Computing in Science and Engineering 9: 90–95. https://doi.org/10.1109/MCSE.2007.55

ICZN 1999. International Code of Zoological Nomenclature. Fourth Edition. International Trust for Zoological Nomenclature, London. Available from https://www.iczn.org/the-code/the-code-online/ [accessed 1 Apr. 2022].

ICZN 2017. Declaration 45—Addition of Recommendations to Article 73 and of the term “specimen, preserved” to the Glossary. Bulletin of Zoological Nomenclature 73 (2–4): 96–97. https://doi.org/10.21805/bzn.v73i2.a2

Kånneby T. 2011. New species and new records of freshwater Chaetonotida (Gastrotricha) from Sweden. Zootaxa 3115 (1): 29–55. https://doi.org/10.11646/zootaxa.3115.1.3

Kånneby T. & Hochberg R. 2015. Phylum Gastrotricha. In: Thorp J.H. & Rogers D.C. (eds) Key to Nearctic Fauna: Thorp and Covich’s Freshwater Invertebrates: 211–223. Elsevier, London.

Kånneby T., Todaro M.A. & Jondelius U. 2012. A phylogenetic approach to species delimitation in freshwater Gastrotricha from Sweden. Hydrobiologia 683 (1): 185–202. https://doi.org/10.1007/s10750-011-0956-1

Kånneby T., Todaro M.A. & Jondelius U. 2013. Phylogeny of Chaetonotidae and other Paucitubulatina (Gastrotricha: Chaetonotida) and the colonization of aquatic ecosystems. Zoologica Scripta 42 (1): 88–105. https://doi.org/10.1111/j.1463-6409.2012.00558.x

Katoh K., Rozewicki J. & Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20 (4): 1160–1166. https://doi.org/10.1093/bib/bbx108

Kieneke A. & Nikoukar H. 2017. Integrative morphological and molecular investigation of Turbanella hyalina Schultze, 1853 (Gastrotricha: Macrodasyida), including a redescription of the species. Zoologischer Anzeiger 267: 168–186. https://doi.org/10.1016/j.jcz.2017.03.005

Kieneke A. & Schmidt-Rhaesa A. 2015. Gastrotricha. In: Schmidt-Rhaesa A. (ed.) Handbook of Zoology 3. Gastrotricha and Gnathifera: 1–134. De Gruyter, Berlin, Boston. https://doi.org/10.1515/9783110274271

Kieneke A., Riemann O. & Ahlrichs W.H. 2008. Novel implications for the basal internal relationships of Gastrotricha revealed by an analysis of morphological characters. Zoologica Scripta 37 (4): 429–460. https://doi.org/10.1111/j.1463-6409.2008.00334.x

Kisielewski J. 1981. Gastrotricha from raised and transitional peat bogs in Poland. Monografie Fauny Polski 11: 1‒143.

Kisielewski J. 1991. Inland-water Gastrotricha from Brazil. Annales Zoologici (Warszawa) 43 (Supplement 2): 1–168.

Kisielewski J. 1997a. On the subgeneric division of the genus Chaetonotus Ehrenberg (Gastrotricha). Annales Zoologici (Warszawa) 46: 145–151.

Kisielewski J. 1997b. Brzuchorzęski (Gastrotricha). Fauna Słodkowodna Polski. Zeszyt 31, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.

Kolicka M. 2016. Gastrotrichs in bromeliads – newly recorded Chaetonotus (Hystricochaetonotus) furcatus Kisielewski, 1991 (Chaetonotida) from the Łódź Palm House. Zoosystema 38 (1): 141–155. https://doi.org/10.5252/z2016n1a5

Kolicka M. 2019a. Gastrotricha – not only in sediments: new epiphytic species of Chaetonotida from the Jubilee Greenhouse of the Botanical Garden in Kraków. European Journal of Taxonomy 511: 1–100. https://doi.org/10.5852/ejt.2019.511

Kolicka M. 2019b. New Chaetonotus (Wolterecka) semovitus sp. nov. (Gastrotricha: Chaetonotida: Chaetonotidae) from a palm house in Vienna (Austria). Annales Zoologici (Warszawa) 69 (2): 447–475. https://doi.org/10.3161/00034541ANZ2019.69.2.011

Kolicka M. 2020. Systematics of the Gastrotrichs from the family Chaetonotidae (Gastrotricha, Chaetonotida) Based on the Integrative Taxonomy Approach. PhD thesis, Adam Mickiewicz University, Poznań, Poland.

Kolicka M., Dabert M., Dabert J., Kånneby T. & Kisielewski J. 2016. Bifidochaetus, a new Arctic genus of freshwater Chaetonotida (Gastrotricha) from Spitsbergen revealed by an integrative taxonomic approach. Invertebrate Systematics 30 (4): 398–419. https://doi.org/ 10.1071/ IS16001

Kolicka M., Kotwicki L. & Dabert M. 2018. Diversity of Gastrotricha on Spitsbergen (Svalbard Archipelago, Arctic) with a description of seven new species. Annales Zoologici (Warszawa) 68 (4): 609–739. https://doi.org10.3161/00034541ANZ2018 .68.4.001

Kolicka M., Dabert M., Olszanowski Z. & Dabert J. 2020. Sweet or salty? The origin of freshwater gastrotrichs (Gastrotricha, Chaetonotida) revealed by molecular phylogenetic analysis. Cladistics 36 (5): 458–480. https://doi.org/10.1111/cla.12424

Križanová F. & Vďačný P. 2021. Description of Lepidochaetus tirjakovae sp. nov. (Gastrotricha: Paucitubulatina: Chaetonotidae), using morphology and DNA barcoding. Zoologischer Anzeiger 292: 207‒224. https://doi.org/10.1016/j.jcz.2021.04.003

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35 (6): 1547–1549. https://doi.org/10.1093/molbev/msy096

Lorenz R., Bernhart S.H., Höner zu Siederdissen C., Tafer H., Flamm C., Stadler P.F. & Hofacker I.L. 2011. ViennaRNA Package 2.0. Algorithms for Molecular Biology 6: e26. https://doi.org/10.1186/1748-7188-6-26

Lorenz R., Hofacker I.L. & Stadler P.F. 2016. RNA folding with hard and soft constraints. Algorithms for Molecular Biology 11: e8. https://doi.org/10.1186/s13015-016-0070-z

Lücking R., Leavitt S.D. & Hawksworth D.L. 2021. Species in lichen-forming fungi: balancing between conceptual and practical considerations, and between phenotype and phylogenomics. Fungal Diversity 109 (1): 99–154. https://doi.org/10.1007/s13225-021-00477-7

Lynn D.H., Doerder F.P., Gillis P.L. & Prosser R.S. 2018. Tetrahymena glochidiophila n. sp., a new species of Tetrahymena (Ciliophora) that causes mortality to glochidia larvae of freshwater mussels (Bivalvia). Diseases of Aquatic Organisms 127: 125–136. https://doi.org/10.3354/dao03188

Magpali L., Machado D.R.P., Araújo T.Q. & Garraffoni A.R.S. 2021. Long distance dispersal and pseudo-cryptic species in Gastrotricha: first description of a new species (Chaetonotida, Chaetonotidae, Polymerurus) from an oceanic island with volcanic rocks. European Journal of Taxonomy 746: 62–93. https://doi.org/10.5852/ejt.2021.746.1319

Mathews D.H. 2004. Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization. RNA 10 (8): 1178–1190. https://doi.org/10.1261/rna.7650904

Müller T., Philippi N., Dandekar T., Schultz J. & Wolf M. 2007. Distinguishing species. RNA 13 (9): 1469–1472. https://doi.org/10.1261/rna.617107

Nguyen L.T., Schmidt H.A., von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300

Ochman H. & Wilson A.C. 1987. Evolution of bacteria: evidence for a universal substitution rate in cellular genomes. Journal of Molecular Evolution 26 (1–2): 74–86. https://doi.org/10.1007/BF02111283

Pecina L. & Vďačný P. 2022. DNA barcoding and coalescent-based delimitation of endosymbiotic clevelandellid ciliates (Ciliophora: Clevelandellida): a shift to molecular taxonomy in the inventory of ciliate diversity in panesthiine cockroaches. Zoological Journal of the Linnean Society 194 (4): 1072–1102. https://doi.org/10.1093/zoolinnean/zlab063

Petrov A.S., Bernier C.R., Gulen B., Waterbury C.C., Hershkovits E., Hsiao C., Harvey S.C., Hud N.V., Fox G.E, Wartell R.M. & Williams L.D. 2014. Secondary structures of rRNAs from all three domains of life. PLoS One 9 (2): e88222. https://doi.org/10.1371/ journal.pone.0088222

Pleijel F., Jondelius U., Norlinder E., Nygren A., Oxelman B., Schander C., Sundberg P. & Thollesson M. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution 48 (1): 369–371. https://doi.org/10.1016/j.ympev.2008.03.024

Popenda M., Szachniuk M., Antczak M., Purzycka K.J., Lukasiak P., Bartol N., Blazewicz J. & Adamiak R.W. 2012. Automated 3D structure composition for large RNAs. Nucleic Acids Research 40 (14): e112. https://doi.org/10.1093/nar/gks339

Rao G.C. & Clausen C. 1970. Planodasys marginalis gen. et. sp. nov. and Planodasyidae fam. nov. (Gastrotricha, Macrodasyoidea). Sarsia 42 (1): 73–82. https://doi.org/10.1080/00364827.1970.10411164

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029

Schwank P. 1990. Gastrotricha. In: Schwoerbel J. & Zwick P. (eds) Süsswasserfauna von Mitteleuropa. Band 3. Gastrotricha und Nemertini: 1–252. Gustav Fischer Verlag, Stuttgart, Jena, New York.

Seibel P.N., Müller T., Dandekar T., Schultz J. & Wolf M. 2006. 4SALE – a tool for synchronous RNA sequence and secondary structure alignment and editing. BMC Bioinformatics 7: e498. https://doi.org/10.1186/1471-2105-7-498

Suzuki T.G. & Furuya H. 2011. Two new species of Chaetonotus (Gastrotricha, Chaetonotida, Chaetonotidae) from Japan. Zootaxa 3011 (1): 27–37. https://doi.org/10.11646/zootaxa.3011.1.3

Sweeney B.A., Hoksza D., Nawrocki E.P., Ribas C.E., Madeira F., Cannone J.J., Gutell R, Maddala A., Meade C.D., Williams L.D., Petrov A.S., Chan P.P., Lowe T.M., Finn R.D. & Petrov A.I. 2021. R2DT is a framework for predicting and visualising RNA secondary structure using templates. Nature Communication 12 (1): e3494. https://doi.org/10.1038/s41467-021-23555-5

Todaro M.A. 2022. Freshwater. In: Todaro M.A. (ed.) Gastrotricha World Portal. Available from http://www.gastrotricha.unimore.it/freshwater.htm [accessed 1 Apr. 2022].

Todaro M.A., Dal Zotto M., Jondelius U., Hochberg R., Hummon W.D., Kånneby T. & Rocha C.E. 2012. Gastrotricha: a marine sister for a freshwater puzzle. PLoS One 7 (2): e31740. https://doi.org/10.1371/journal.pone.0031740

Todaro M.A., Sibaja-Cordero J.A., Segura-Bermúdez O.A., Coto-Delgado G., Goebel-Otárola N., Barquero J.D., Cullell-Delgado M. & Dal Zotto M. 2019. An introduction to the study of Gastrotricha, with a taxonomic key to families and genera of the group. Diversity 11 (7): e117. https://doi.org/10.3390/d11070117

Trifinopoulos J., Nguyen L. T., von Haeseler A. & Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44 (W1): W232–W235. https://doi.org/10.1093/nar/gkw256

Vďačný P. 2015. Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. European Journal of Protistology 51 (4): 321–334. https:// doi.org/10.1016/j.ejop.2015.06.008

Vďačný P., Rajter Ľ., Stoeck T. & Foissner W. 2019. A proposed timescale for the evolution of armophorean ciliates: clevelandellids diversify more rapidly than metopids. Journal of Eukaryotic Microbiology 66 (1): 167–181. https://doi.org/10.1111/jeu.12641

Wägele J.-W. 2005. Foundations of Phylogenetic Systematics. Second Edition. Verlag Dr Friedrich Pfeil, München.

Wiley E.O. & Lieberman B.S. 2011. Phylogenetics: Theory and Practice of Phylogenetic Systematics. Second Edition. Wiley-Blackwell, Hoboken, New Jersey.

Woese C.R. & Fox G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74 (11): 5088–5090. https://doi.org/10.1073/pnas.74.11.5088

Wolf M., Friedrich J., Dandekar T. & Müller T. 2005. CBCAnalyzer: inferring phylogenies based on compensatory base changes in RNA secondary structures. In Silico Biology 5 (3): 291–294.

Wolf M., Chen S., Song J., Ankenbrand M. & Müller T. 2013. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences – a proof of concept. PloS One 8 (6): e66726. https://doi.org/10.1371/journal.pone.0066726

Wright A.-D.G. & Lynn D.H. 1997. Maximum ages of ciliate lineages estimated using a small subunit rRNA molecular clock: crown eukaryotes date back to the Paleoproterozoic. Archiv für Protistenkunde 148 (4): 329–341. https://doi.org/10.1016/S0003-9365(97)80013-9

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31 (13): 3406–3415. https://doi.org/10.1093/nar/gkg595

Published
2022-10-11
How to Cite
Rataj Križanová, F., & Vďačný, P. (2022). A huge undescribed diversity of the subgenus Hystricochaetonotus (Gastrotricha, Chaetonotidae, Chaetonotus) in Central Europe. European Journal of Taxonomy, 840(1), 1–93. https://doi.org/10.5852/ejt.2022.840.1941
Section
Monograph