Cutting the ribbon: bathyal Nemertea from seeps along the Costa Rica margin, with descriptions of 2 new genera and 9 new species

  • Christina Sagorny Institute of Evolutionary Biology and Animal Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany https://orcid.org/0000-0002-5873-5566
  • Jörn von Döhren Institute of Evolutionary Biology and Animal Ecology, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany
  • Greg W. Rouse Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093–0202, USA https://orcid.org/0000-0001-9036-9263
  • Ekin Tilic Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093–0202, USA https://orcid.org/0000-0003-0463-322X
Keywords: deep sea, ribbon worms, cold seeps, integrative taxonomy, turbo taxonomy

Abstract

The taxonomy of ribbon worms (Nemertea) is particularly challenging due to the sparsity of distinct morphological characters, causing a significant underestimation of the group’s true diversity. The number of named deep-sea species is very limited and there is a vast number of undescribed deep-sea nemerteans still to be discovered. In this paper we figuratively ‘cut the ribbon’ and name seven new species of monostiliferous hoplonemerteans from seeps and seamounts along the Costa Rican margin, one from seeps along the Oregon margin, and one from vents of the Juan de Fuca Ridge, USA. The species Chernyshevia escarpiaphila gen. et sp. nov. and five species of the genus Alvinonemertes gen. nov. (Alvinonemertes dariae gen. et sp. nov., Alvinonemertes dagmarae gen. et sp. nov., Alvinonemertes christianeae gen. et sp. nov., Alvinonemertes claudiae gen. et sp. nov., Alvinonemertes tatjanae gen. et sp. nov.) represent Oerstediina, whereas the three species Tetrastemma sundbergi sp. nov., Tetrastemma polyakovae sp. nov., and Tetrastemma strandae sp. nov. represent Amphiporina. One species of tubulanid palaeonemerteans is described but not provided with a species name due to lacking sequence data for comparison. Additionally, we provide sequence data for one lineid heteronemertean, one reptant hoplonemertean, and two further eumonostiliferan hoplonemertean species. We use an integrative, turbotaxonomic approach combining DNA sequence data with concise morphological descriptions and fully digitized serial histological sections made available as cybertypes.

References

Andrade S.C.S., Strand M., Schwartz M., Chen H., Kajihara H., Döhren J. von, Sun S., Junoy J., Thiel M., Norenburg J.L., Turbeville J.M., Giribet G. & Sundberg P. 2012. Disentangling ribbon worm relationships: multi-locus analysis supports traditional classification of the phylum Nemertea. Cladistics 28: 141–159. https://doi.org/10.1111/j.1096-0031.2011.00376.x

Borda E., Kudenov J.D., Chevaldonné P., Blake J.A., Desbruyères D., Fabri M.-C., Hourdez S., Pleijel F., Shank T.M., Wilson N.G., Schulze A. & Rouse G.W. 2013. Cryptic species of Archinome (Annelida: Amphinomida) from vents and seeps. Proceeding of the Royal Society B Biological Sciences 280: 28020131876. https://doi.org/10.1098/rspb.2013.1876

Breusing C., Johnson S.B., Vrijenhoek R.C. & Young C.R. 2019. Host hybridization as a potential mechanism of lateral symbiont transfer in deep-sea vesicomyid clams. Molecular Ecology 28: 4697–4708. https://doi.org/10.1111/mec.15224

Brinkmann A. 1914–1915. Uniporus, ein neues Genus der Familie Drepanophoridae Verill. Bergens Museums Aarbok 6: 1–29.

Bürger O. 1904. Nemertini. In: Das Tierreich 20. Lieferung Platyhelminthes. R. Friedländer & Sohn, Berlin.

Butcher B.A., Smith M.A., Sharkey M.J. & Quicke D.L.J. 2012. A turbo-taxonomic study of Thai Aleiodes (Aleiodes) and Aleiodes (Arcaleiodes) (Hymenoptera: Braconidae: Rogadinae) based largely on COI barcoded specimens, with rapid descriptions of 179 new species. Zootaxa 3457 (1): 1–232. https://doi.org/10.11646/zootaxa.3457.1.1

Cantell C.-E. 2001. On the anatomy and taxonomy of Tubulanus lutescens n. sp. (Nemertini) from the West Coast of Sweden. Ophelia 54: 213–221. https://doi.org/10.1080/00785236.2001.10409467

Castresana J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334

Chernomor O., Haeseler A. von & Minh B.Q. 2016. Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology 65: 997–1008. https://doi.org/10.1093/sysbio/syw037

Chernyshev A.V. 2004. Two new genera of nemertean worms of the family Tetrastemmatidae (Nemertea: Monostilifera). Zoosystematica Rossica 12 (2): 151–156.

Chernyshev A.V. 2013. Two new species of deep-sea nemerteans from the SoJaBio expedition in the Sea of Japan. Deep Sea Research Part II: Topical Studies in Oceanography 86–87: 148–155. https://doi.org/10.1016/j.dsr2.2012.07.041

Chernyshev A.V. 2014. Nemertean biodiversity in the Sea of Japan and adjacent areas. In: Song S., Adrianov A.V., Lutaenko K.A. & Xiao-Xia S. (eds) Marine Biodiversity and Ecosystem Dynamics of the Northwest Pacific Ocean: 119–135. Science Press.

Chernyshev A.V. 2020. Nemertea. In: Saeedi H. & Brandt A. (eds) Biogeographic Atlas of the Deep NW Pacific Fauna: 107–113. Pensoft Publishers. https://doi.org/10.3897/ab.e51315

Chernyshev A.V. & Polyakova N.E. 2018a. Nemerteans from deep-sea expedition SokhoBio with description of Uniporus alisae sp. nov. (Hoplonemertea: Reptantia s.l.) from the Sea of Okhotsk. Deep Sea Research Part II: Topical Studies in Oceanography 154: 121–139. https://doi.org/10.1016/j.dsr2.2017.09.022

Chernyshev A.V. & Polyakova N.E. 2018b. Nemerteans of the Vema-TRANSIT expedition: First data on diversity with description of two new genera and species. Deep Sea Research Part II: Topical Studies in Oceanography 148: 64–73. https://doi.org/10.1016/j.dsr2.2017.06.004

Chernyshev A.V. & Polyakova N.E. 2019. Nemerteans from the deep-sea expedition KuramBio II with descriptions of three new hoplonemerteans from the Kuril-Kamchatka Trench. Progress in Oceanography 178: 102148. https://doi.org/10.1016/j.pocean.2019.102148

Chernyshev A.V., Abukawa S. & Kajihara H. 2015. Sonnenemertes cantelli gen. et sp. nov. (Heteronemertea) — A new Oxypolella-like nemertean from the abyssal plain adjacent to the Kuril–Kamchatka Trench. Deep Sea Research Part II: Topical Studies in Oceanography 111: 119–127. https://doi.org/10.1016/j.dsr2.2014.07.014

Chernyshev A.V., Polyakova N.E., Vignesh M.S., Jain R.P., Sanjeevi P., Norenburg J.L. & Rajesh R.P. 2020. A histology-free description of a new species of the genus Tetrastemma (Nemertea: Hoplonemertea: Monostilifera) from Hawaii and India. Zootaxa 4808: 379–383. https://doi.org/10.11646/zootaxa.4808.2.10

Chernyshev A.V., Polyakova N.E., Norenburg J.L. & Kajihara H. 2021. A molecular phylogeny of Tetrastemma and its allies (Nemertea, Monostilifera). Zoologica Scripta 50: 824–836. https://doi.org/10.1111/zsc.12511

Clement M., Posada D. & Crandall K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

Dando P.R., Austen M.C., Burke R.A., Kendall M.A., Kennicutt M.C., Judd A.G., Moore D.C., O’Hara S.C.M., Schmalijohann R. & Southward A.J. 1991. Ecology of a North Sea pockmark with an active methane seep. Marine Ecology Progress Series 70 (1): 49–63.

Dayrat B. 2005. Towards integrative taxonomy. Biological Journal of the Linnean Society 85: 407–417. https://doi.org/10.1111/j.1095-8312.2005.00503.x

Delić T., Trontelj P., Rendoš M. & Fišer C. 2017. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports 7: 3391. https://doi.org/10.1038/s41598-017-02938-z

Dexter D.M. 1974. Sandy-beach fauna of the Pacific and Atlantic coasts of Costa Rica and Colombia. Revista de Biología Tropical 22 (1): 51–66.

Gibson R. 1982. British Nemerteans. Cambridge University Press, Cambridge.

Gibson R. 1983. Antarctic nemerteans: the anatomy, distribution and biology of Parborlasia corrugatus (McIntosh, 1876) (Heteronemertea, Lineidae). In: Kornicker L.S. (ed.) Biology of the Antarctic Seas XIV. Antarctic Research Series 39 (4): 289–316. https://doi.org/10.1029/AR039p0289

Gibson R. 1995. Nemertean genera and species of the world: an annotated checklist of original names and desvription citations, synonyms, current taxonomic status, habitats and recorded zoogeographic distribution. Journal of Natural History 29: 271–561. https://doi.org/10.1080/00222939500770161

Gibson R. & Sundberg P. 1999. Six new species of palaeonemerteans (Nemertea) from Hong Kong. Zoological Journal of the Linnean Society 125: 151–196. https://doi.org/10.1111/j.1096-3642.1999.tb00590.x

Godfray H.C.J., Knapp S. & Wheeler Q.D. 2004. Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 359: 571–583. https://doi.org/10.1098/rstb.2003.1452

Goffredi S.K., Tilic E., Mullin S.W., Dawson K.S., Keller A., Lee R.W., Wu F., Levin L.A., Rouse G.W., Cordes E.E. & Orphan V.J. 2020. Methanotrophic bacterial symbionts fuel dense populations of deep-sea feather duster worms (Sabellida, Annelida) and extend the spatial influence of methane seepage. Science Advances 6: eaay8562. https://doi.org/10.1126/sciadv.aay8562

Hatch A.S., Liew H., Hourdez S. & Rouse G.W. 2020. Hungry scale worms: phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species. ZooKeys 932: 27–74. https://doi.org/10.3897/zookeys.932.48532

Hoang D.T., Chernomor O., Haeseler A. von, Minh B.Q. & Le Vinh S. 2018. UFBoot2: improving the ultrafast Bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281

Hookabe N., Asai M., Nakano H., Kimura T. & Kajihara H. 2020a. A new bathyal tubulanid nemertean, Tubulanus izuensis sp. nov. (Nemertea: Palaeonemertea), from Japanese waters. Proceedings of the Biological Society of Washington 133: 122–133. https://doi.org/10.2988/PBSW-D-20-00006

Hookabe N., Tsuchida S., Fujiwara Y. & Kajihara H. 2020b. A new species of bathyal nemertean, Proamphiporus kaimeiae sp. nov., off Tohoku, Japan, and molecular systematics of the genus (Nemertea: Monostilifera). Species Diversity 25: 183–188. https://doi.org/10.12782/specdiv.25.183

Hubrecht A.A.W. 1887. Report on the Nemertea collected by H.M.S. Challenger during the years 1873–76. Report on the Scientific Results of the Voyage of H.S.M. “Challenger”, Zoology 19 (part 54): 1–147.https://doi.org/10.5962/bhl.title.3925

Joubin L. 1902. Némertiens. In: Milne-Edwards A. & Perrier E. (eds) Expéditions scientifiques du “Travailleur” et du “Talisman” pendant les années 1880, 1881, 1882, 1883 6: 181–220. Masson et cie, Paris. https://doi.org/10.5962/bhl.title.98313

Junoy J., Andrade S.C.S. & Giribet G. 2010. Phylogenetic placement of a new hoplonemertean species commensal on ascidians. Invertebrate Systematics 24: 616–629. https://doi.org/10.1071/IS10036

Kajihara H. 2015. A histology-free description of the branched-proboscis ribbonworm Gorgonorhynchus albocinctus sp. nov. (Nemertea: Heteronemertea). Publications of the Seto Marine Biological Laboratory 43: 92–102. https://doi.org/10.5134/199852

Kajihara H. 2021. Higher classification of the Monostilifera (Nemertea: Hoplonemertea). Zootaxa 4920: 151–199. https://doi.org/10.11646/zootaxa.4920.2.1

Kajihara H., Chernyshev A.V., Sun S.-C., Sundberg P. & Crandall F.B. 2008. Checklist of nemertean genera and species published between 1995 and 2007. Species Diversity 13: 245–274.

Kajihara H. & Lindsay D. 2010. Dinonemertes shinkaii sp. nov., (Nemertea: Hoplonemertea: Polystilifera: Pelagica) a new species of bathypelagic nemertean. Zootaxa 2429: 43–51. https://doi.org/10.11646/zootaxa.2429.1.3

Kajihara H., Tamura K. & Tomioka S. 2018. Histology-free descriptions for sevens species of interstitial ribbon worms in the genus Ototyphlonemertes (Nemertea: Monostilifera) from Vietnam. Species Diversity 23: 13–37. https://doi.org/10.12782/specdiv.23.13

Karaseva N.P., Rimskaya-Korsakova N.N., Galkin S.V. & Malakhov V. V. 2016. Taxonomy, geographical and bathymetric distribution of vestimentiferan tubeworms (Annelida, Siboglinidae). Biology Bulletin Russian Academy of Sciences 43: 937–969. https://doi.org/10.1134/S1062359016090132

Katoh K. & Standley D.M. 2013. MAFFT Multiple Sequence Alignment Software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Katoh K., Misawa K., Kuma K.-i. & Miyata T. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30: 3059–3066. https://doi.org/10.1093/nar/gkf436

Katoh K., Rozewicki J. & Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kobayashi G. & Araya J.F. 2018. Southernmost records of Escarpia spicata and Lamellibrachia barhami (Annelida: Siboglinidae) confirmed with DNA obtained from dried tubes collected from undiscovered reducing environments in northern Chile. PLoS ONE 13: e0204959. https://doi.org/10.1371/journal.pone.0204959

Kremer J.R., Mastronarde D.N. & McIntosh J.R. 1996. Computer visualization of three-dimensional image data using IMOD. Journal of Structural Biology 116: 71–76. https://doi.org/10.1006/jsbi.1996.0013

Kvist S., Chernyshev A.V. & Giribet G. 2015. Phylogeny of Nemertea with special interest in the placement of diversity from Far East Russia and northeast Asia. Hydrobiologia 760: 105–119. https://doi.org/10.1007/s10750-015-2310-5

Kvist S., Laumer C.E., Junoy J. & Giribet G. 2014. New insights into the phylogeny, systematics and DNA barcoding of Nemertea. Invertebrate Systematics 28 (3): 287–308. https://doi.org/10.1071/IS13061

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. https://doi.org/10.1093/molbev/msw260

Leigh J.W. & Bryant D. 2015. popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410

León-Morales R. & Vargas J.A. 1998. Macroinfauna of a tropical fjord-like embayment: Golfo Dulce, Costa Rica. Revista de Biología Tropical 46 (Supplement 6): 81–90.

Levin L.A., Ziebis W., Mendoza G.F., Growney-Cannon V., Tryon M.D., Brown K.M., Mahn C., Gieskes J.M. & Rathburn A.E. 2003. Spatial heterogeneity of macrofauna at northern California methane seeps: influence of sulfide concentration and fluid flow. Marine Ecology Progress Series 265: 123–139. https://doi.org/10.3354/meps265123

Levin L.A., Ziebis W., Mendoza G.F., Growney-Cannon V. & Walther S. 2006. Recruitment response of methane-seep macrofauna to sulfide-rich sediments: an in situ experiment. Journal of Experimental Marine Biology and Ecology 330: 132–150. https://doi.org/10.1016/j.jembe.2005.12.022

Levin L.A., Orphan V.J., Rouse G.W., Rathburn A.E., Ussler W., Cook G.S., Goffredi S.K., Perez E.M., Waren A., Grupe B.M., Chadwick G. & Strickrott B. 2012. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems. Proceedings. Biological Sciences 279: 2580–2588. https://doi.org/10.1098/rspb.2012.0205

Levin L.A., Mendoza G.F., Grupe B.M., Gonzalez J.P., Jellison B., Rouse G., Thurber A.R. & Waren A. 2015. Biodiversity on the rocks: macrofauna inhabiting authigenic carbonate at Costa Rica methane seeps. PloS ONE 10: e0131080. https://doi.org/10.1371/journal.pone.0131080

Levin L.A., Mendoza G.F. & Grupe B.M. 2017. Methane seepage effects on biodiversity and biological traits of macrofauna inhabiting authigenic carbonates. Deep Sea Research Part II: Topical Studies in Oceanography 137: 26–41. https://doi.org/10.1016/j.dsr2.2016.05.021

Martin A.M. & Goffredi S.K. 2012. ‘Pliocardia’ krylovata, a new species of vesicomyid clam from cold seeps along the Costa Rica Margin. Journal of the Marine Biological Association of the United Kingdom 92: 1127–1137. https://doi.org/10.1017/S0025315411000713

Martin J., Wall A., Shank T.M., Cha H., Seid C. & Rouse G. 2018. A new species of Alvinocaris (Crustacea: Decapoda: Caridea: Alvinocarididae) from Costa Rican methane seeps. Zootaxa 4504: 418–430. https://doi.org/10.11646/zootaxa.4504.3.7

Maslakova S.A. & Norenburg J.L. 2001. Phylogenetic study of pelagic nemerteans (Pelagica, Polystilifera). Hydrobiologia 456: 111–132. https://doi.org/10.1023/A:1013048419113

McCowin M.F. & Rouse G. 2018. A new Lamellibrachia species and confirmed range extension for Lamellibrachia barhami (Siboglinidae, Annelida) from Costa Rica methane seeps. Zootaxa 4504: 1–22. https://doi.org/10.11646/zootaxa.4504.1.1

McCowin M.F., Feehery C. & Rouse G. 2020. Spanning the depths or depth-restricted: three new species of Bathymodiolus (Bivalvia, Mytilidae) and a new record for the hydrothermal vent Bathymodiolus thermophilus at methane seeps along the Costa Rica margin. Deep Sea Research Part I: Oceanographic Research Papers 164: 103322. https://doi.org/10.1016/j.dsr.2020.103322

Nguyen L.-T., Schmidt H.A., Haeseler A. von & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268–274. https://doi.org/10.1093/molbev/msu300

Okazaki R.K. & Wehrtmann I.S. 2014. Preliminary survey of a nemertean crab egg predator, Carcinonemertes, on its host crab, Callinectes arcuatus (Decapoda, Portunidae) from Golfo de Nicoya, Pacific Costa Rica. ZooKeys 457: 367–375. https://doi.org/10.3897/zookeys.457.6918

Pereira O.S., Gonzalez J., Mendoza G., Le J., McNeill M., Ontiveros J., Lee R.W., Rouse G.W., Cortés J. & Levin L.A. 2022. Does substrate matter in the deep sea? A comparison of bone, wood, and carbonate rock colonizers. PLoS ONE 17 (7): e0271635. https://doi.org/10.1371/journal.pone.0271635

Riedel A., Sagata K., Suhardjono Y.R., Tänzler R. & Balke M. 2013. Integrative taxonomy on the fast track – towards more sustainability in biodiversity research. Frontiers in Zoology 10: 15. https://doi.org/10.1186/1742-9994-10-15

Roe P. & Norenburg J.L. 1999. Observations on depth distribution, diversity and abundance of pelagic nemerteans from the Pacific Ocean off California and Hawaii. Deep Sea Research Part I: Oceanographic Research Papers 46: 1201–1220. https://doi.org/10.1016/S0967-0637(98)00109-5

Rogers A.D., Gibson R. & Tunnicliffe V. 1996. A new genus and species of monostiliferous hoplonemertean colonizing an inchoate hydrothermal field on Juan de Fuca Ridge. Deep Sea Research Part I: Oceanographic Research Papers 43: 1581–1599. https://doi.org/10.1016/S0967-0637(96)00076-3

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Rouse G.W. & Kupriyanova E.K. 2021. Laminatubus (Serpulidae, Annelida) from eastern Pacific hydrothermal vents and methane seeps, with description of two new species. Zootaxa 4915: 1–27. https://doi.org/10.11646/zootaxa.4915.1.1

Rouse G.W., Carvajal J.I. & Pleijel F. 2018a. Phylogeny of Hesionidae (Aciculata, Annelida), with four new species from deep-sea eastern Pacific methane seeps, and resolution of the affinity of Hesiolyra. Invertebrate Systematics 32 (5): 1050–1068. https://doi.org/10.1071/IS17092

Rouse G.W., Goffredi S.K., Johnson S.B. & Vrijenhoek R.C. 2018b. An inordinate fondness for Osedax (Siboglinidae: Annelida): fourteen new species of bone worms from California. Zootaxa 4377: 451–489. https://doi.org/10.11646/zootaxa.4377.4.1

Sahling H., Masson D.G., Ranero C.R., Hühnerbach V., Weinrebe W., Klaucke I., Bürk D., Brückmann W. & Suess E. 2008. Fluid seepage at the continental margin offshore Costa Rica and southern Nicaragua. Geochemistry, Geophysics, Geosystems 9: Q05S05. https://doi.org/10.1029/2008GC001978

Sanamyan K., Sanamyan N. & Kuhnz L. 2018. A new Culeolus species (Ascidiacea) from the NE Pacific, California. Zootaxa 4420: 270–278. https://doi.org/10.11646/zootaxa.4420.2.8

Schander C. & Willassen E. 2005. What can biological barcoding do for marine biology? Marine Biology Research 1: 79–83. https://doi.org/10.1080/17451000510018962

Sharkey M.J., Janzen D.H., Hallwachs W., Chapman E.G., Smith M.A., Dapkey T., Brown A., Ratnasingham S., Naik S., Manjunath R., Perez K., Milton M., Hebert P., Shaw S.R., Kittel R.N., Solis M.A., Metz M.A., Goldstein P.Z., Brown J.W., Quicke D.L.J., van Achterberg C., Brown B.V. & Burns J.M. 2021. Minimalist revision and description of 403 new species in 11 subfamilies of Costa Rican braconid parasitoid wasps, including host records for 219 species. ZooKeys 1013: 1–665. https://doi.org/10.3897/zookeys.1013.55600

Shields J.D. & Segonzac M. 2007. New nemertean worms (Carcinonemertidae) on bythograeid crabs (Decapoda: Brachyura) from Pacific hydrothermal vent sites. Journal of Crustacean Biology 27: 681–692. https://doi.org/10.1651/S-2794.1

Sibaja-Cordero J.A. 2018. Spatial distribution of macrofauna within a sandy beach on the Caribbean coast of Costa Rica. Revista de Biología Tropical 66: S176–S186. https://doi.org/10.15517/rbt.v66i1.33295

Sibaja-Cordero J.A., Camacho-García Y.E., Azofeifa-Solano J.C. & Alvado-Arranz B. 2019. Ecological patterns of macrofauna in sandy beaches of Costa Rica: a Pacific-Caribbean comparison. Estuarine, Coastal and Shelf Science 223: 94–104. https://doi.org/10.1016/j.ecss.2019.04.032

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Stiasny-Wijnhoff G. 1923. Memoirs: on Brinkmann’s system of the Nemertea Enopla and Siboganemertes weberi, n.g. n.sp. Quarterly Journal of Microscopical Science s2-67 (268): 627–669.

Stiller J., Rousset V., Pleijel F., Chevaldonné P., Vrijenhoek R.C. & Rouse G.W. 2013. Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species. Systematics and Biodiversity 11: 35–65. https://doi.org/10.1080/14772000.2013.772925

Strand M. & Sundberg P. 2005a. Delimiting species in the hoplonemertean genus Tetrastemma (Phylum Nemertea): morphology is not concordant with phylogeny as evidenced from mtDNA sequences. Biological Journal of the Linnean Society 86: 201–212. https://doi.org/10.1111/j.1095-8312.2005.00535.x

Strand M. & Sundberg P. 2005b. Genus Tetrastemma Ehrenberg, 1831 (Phylum Nemertea) — A natural group? Phylogenetic relationships inferred from partial 18S rRNA sequences. Molecular Phylogenetics and Evolution 37: 144–152. https://doi.org/10.1016/j.ympev.2005.02.006

Strand M. & Sundberg P. 2011. A DNA-based description of a new nemertean (Phylum Nemertea) species. Marine Biology Research 7: 63–70. https://doi.org/10.1080/17451001003713563

Strand M., Herrera-Bachiller A., Nygren A. & Kånneby T. 2014. A new nemertean species: what are the useful characters for ribbon worm descriptions? Journal of the Marine Biological Association of the United Kingdom 94: 317–330. https://doi.org/10.1017/S002531541300146X

Summers M.M., Al-Hakim I.I. & Rouse G.W. 2014. Turbo-taxonomy: 21 new species of Myzostomida (Annelida). Zootaxa 3873: 301–344. https://doi.org/10.11646/zootaxa.3873.4.1

Sundberg P. 2015. Thirty-five years of nemertean (Nemertea) research — Past, present, and future. Zoological Science 32: 501–506. https://doi.org/10.2108/zs140254

Sundberg P. & Gibson R. 1995. The nemerteans (Nemertea) of Rottnest Island, Western Australia. Zoologica Scripta 24: 101–141. https://doi.org/10.1111/j.1463-6409.1995.tb00395.x

Sundberg P. & Hylbom R. 1994. Phylogeny of the nemertean Subclass Palaeonemertea (Anopla, Nemertea). Cladistics 10: 347–402. https://doi.org/10.1006/clad.1994.1025

Sundberg P. & Strand M. 2010. Nemertean taxonomy – time to change lane? Journal of Zoological Systematics and Evolutionary Research 48: 283–184. https://doi.org/10.1111/j.1439-0469.2010.00568.x

Sundberg P., Chernyshev A.V., Kajihara H., Kanneby T. & Strand M. 2009. Character-matrix based descriptions of two new nemertean (Nemertea) species. Zoological Journal of the Linnean Society 157: 264–294. https://doi.org/10.1111/j.1096-3642.2008.00514.x

Sundberg P., Andrade S.C.S., Bartolomaeus T., Beckers P., Döhren J. von, Krämer D., Gibson R., Giribet G., Herrera-Bachiller A., Junoy J., Kajihara H., Kvist S., Kånneby T., Sun S.-C., Thiel M., Turbeville J.M. & Strand M. 2016a. The future of nemertean taxonomy (phylum Nemertea) — A proposal. Zoologica Scripta 45: 579–582. https://doi.org/10.1111/zsc.12182

Sundberg P., Kvist S. & Strand M. 2016b. Evaluating the utility of single-locus DNA barcoding for the identification of ribbon worms (Phylum Nemertea). PloS ONE 11: e0155541. https://doi.org/10.1371/journal.pone.0155541

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30: 2725–2729. https://doi.org/10.1093/molbev/mst197

Thollesson M. & Norenburg J.L. 2003. Ribbon worm relationships: a phylogeny of the phylum Nemertea. Proceedings of the Royal Society of London. Series B: Biological Sciences 270: 407–415. https://doi.org/10.1098/rspb.2002.2254

Vaidya G., Lohman D.J. & Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27: 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x

van Dover C.L., German C.R., Speer K.G., Parson L.M. & Vrijenhoek R.C. 2002. Evolution and biogeography of deep-sea vent and seep invertebrates. Science 295: 1253. https://doi.org/10.1126/science.1067361

Verrill A.E. 1892. The marine nemerteans of New England and adjacent waters. Transactions of the Connecticut Academy of Arts and Sciences 8: 382–456.

Völgyes D. & Lupton R. 2020. Zenodo_get: a downloader for Zenodo records. Zenodo.https://doi.org/10.5281/zenodo.1261812

Vrijenhoek R.C. 2010. Genetic diversity and connectivity of deep-sea hydrothermal vent metapopulations. Molecular Ecology 19: 4391–4411. https://doi.org/10.1111/j.1365-294X.2010.04789.x

Zapata-Hernández G., Sellanes J., Thurber A.R. & Levin L.A. 2014. Trophic structure of the bathyal benthos at an area with evidence of methane seep activity off southern Chile (~45°S). Journal of the Marine Biological Association of the United Kingdom 94: 659–669. https://doi.org/10.1017/S0025315413001914

Published
2022-10-27
How to Cite
Sagorny, C., Döhren, J. von, Rouse, G. W., & Tilic, E. (2022). Cutting the ribbon: bathyal Nemertea from seeps along the Costa Rica margin, with descriptions of 2 new genera and 9 new species. European Journal of Taxonomy, 845(1), 132–174. https://doi.org/10.5852/ejt.2022.845.1959
Section
Research article