Biema Huo & Zhao gen. nov., a new flower fly genus (Diptera, Syrphidae) from China

Keywords: Syrphinae, Melanostomini, Bacchini, new genus, new species

Abstract

A new flower fly genus (Diptera, Syrphidae), Biema Huo & Zhao gen. nov. from China is described based on two new species: Biema wanglangensis Huo & Zhao gen. et sp. nov. (designated as type-species) and Biema qilianensis Huo & Liu gen. et sp. nov. The new genus can easily be distinguished by the following morphological features: head, mesonotum and scutellum black; postpronotum without pile; metasternum not reduced, posterior margin shallowly concave; katepisternum only with ventral pile patches; alula narrow, as wide as basal width of cell c; male postabdomen conspicuously more swollen than other segments, surstylus and postgonite complex, phallus unsegmented. The results of our Bayesian inference and Maximum Likelihood analysis based on sequences of the Cytochrome c oxidase subunit I (COI) gene, as well as the species delimitation tests, support the separation of Biema Huo & Zhao gen. nov. from its related taxa. Additionally, an identification key to the genera of the tribes Bacchini and Melanostomini occurring in China is provided.

References

Arcaya E., Pérez-Bañón C., Mengual X., Zubcoff-Vallejo J.J. & Rojo S. 2017. Life table and predation rates of the syrphid fly Allograpta exotica, a control agent of the cowpea aphid Aphis craccivora. Biological Control 115: 74–84. https://doi.org/10.1016/j.biocontrol.2017.09.009

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A. & Drummond A.J. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10 (4): e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Capella-Gutiérrez S., Silla-Martínez J.M. & Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Chen S., Zhou Y., Chen Y. & Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 (17): i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Cheng X.Y., Huang C.M. & Yang J.K. 1998. Syrphidae. In: Flies of China: 118–223. Liaoning Science and Technology Press, Shengyang, China.

Dunn L., Lequerica M., Reid C. & Latty T. 2020. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): pollinators and biological control agents. Pest Management Science 76 (6): 1973–1979. https://doi.org/10.1002/ps.5807

Fujisawa T. & Barraclough T.G. 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62 (5): 707–724. https://doi.org/10.1093/sysbio/syt033

Huo K.K. 2014. Spazigasteroides a new genus from China with a black face and scutellum in the Syrphini (Diptera: Syrphidae). Zootaxa 3755 (3): 230. https://doi.org/10.11646/zootaxa.3755.3.2

Huo K.K. 2020. Syrphidae. In: Species Catalogue of China. Volume 2. Animals. Insecta. Diptera (3). Cyclorrhaphous Brachycera (i): 30–181. Science Press.

Huo K.K., Ren G.D. & Zheng Z.M. 2007. Fauna of Syrphidae from Mt. Qinling-Bashan in China (Insecta: Diptera). Chinese Agricultural Science and Technology Press, Beijing.

Inouye D.W., Larson B.M.H., Ssymank A. & Kevan P.G. 2015. Flies and flowers III: ecology of foraging and pollination. Journal of Pollination Ecology 16: 115–133. https://doi.org/10.26786/1920-7603(2015)15

Jones M., Ghoorah A. & Blaxter M. 2011. jMOTU and Taxonerator: turning DNA barcode sequences into annotated Operational Taxonomic Units. PLoS ONE 6 (4): e19259. https://doi.org/10.1371/journal.pone.0019259

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2): 111–120. https://doi.org/10.1007/BF01731581

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2017. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34 (3): 772–773. https://doi.org/10.1093/molbev/msw260

Le Peletier A.L.M. & Serville J.G.A. 1828. Entomologie, ou histoire naturelle des Crustacés, des Arachnides et des Insectes. Encyclopédie méthodique. Histoire naturelle des animaux 10: 1–833. https://doi.org/10.5962/bhl.title.82248

Matsumura S. & Adachi J. 1917. Synopsis of the economic Syrphidae of Japan. The Entomological Magazine, Kyoto 2 (4): 133–156.

Mengual X. 2020. Phylogenetic relationships of the bacchine flower flies (Diptera: Syrphidae) based on molecular characters, with a description of a new species of Melanostoma (Schiner, 1860). Contributions to Zoology 89 (2): 210–244. https://doi.org/10.1163/18759866-20191410

Mengual X., Ståhls G. & Rojo S. 2015. Phylogenetic relationships and taxonomic ranking of pipizine flower flies (Diptera: Syrphidae) with implications for the evolution of aphidophagy. Cladistics 31 (5): 491–508. https://doi.org/10.1111/cla.12105

Moerkens R., Boonen S., Wäckers F.L. & Pekas A. 2021. Aphidophagous hoverflies reduce foxglove aphid infestations and improve seed set and fruit yield in sweet pepper. Pest Management Science 77 (6): 2690–2696. https://doi.org/10.1002/ps.6342

Morales G.E. & Wolff M. 2010. Insects associated with the composting process of solid urban waste separated at the source. Revista Brasileira de Entomologia 54 (4): 645–653. https://doi.org/10.1590/S0085-56262010000400017

Nguyen L.T., Schmidt H.A., Von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300

Procheş S. & Ramdhani S. 2012. The world’s zoogeographical regions confirmed by cross-taxon analyses. BioScience 62 (3): 260–270. https://doi.org/10.1525/bio.2012.62.3.7

Puillandre N., Lambert A., Brouillet S. & Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

Radenković S., Likov L., Ståhls G., Rojo S., Pérez-Bañón C., Smit J., Petanidou T., Van Steenis W. & Vujić A. 2020. Three new hoverfly species from Greece (Diptera: Syrphidae). Zootaxa 4830 (1): 103–124. https://doi.org/10.11646/zootaxa.4830.1.4

Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029

Sack P. 1922. H. Sauter’s Formosa-Ausbeute: Syrphiden II (Dipteren). Archiv für Naturgeschichte 87: 258–276. Available from https://www.biodiversitylibrary.org/part/40325 [accessed 25 Nov. 2022].

Shorthouse D. 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available from https://www.simplemappr.net/ [accessed 25 Nov. 2022].

Thompson F.C. 1999. A key to the genera of the flower flies (Diptera: Syrphidae) of the Neotropical Region including descriptions of new genera and species and a glossary of taxonomic terms used. Contributions on Entomology 3: 322–373. Available from https://repository.si.edu/handle/10088/17492 [accessed 25 Nov. 2022].

Thompson F.C. & Rotheray G. 1998. Family Syrphidae. In: Contributions to a Manual of Palaearctic Diptera. Vol. 3 Higher Brachycera: 81–139. Science Herald, Budapest.

Thompson F.C. & Skevington J.H. 2014. Afrotropical flower flies (Diptera: Syrphidae). A new genus and species from Kenya, with a review of the melanostomine group of genera. Zootaxa 3847 (1): 97–114. https://doi.org/10.11646/zootaxa.3847.1.5

Vockeroth J. R. 1992. The flower flies of the subfamily Syrphinae of Canada, Alaska, and Greenland (Diptera: Syrphidae). The Insects and Arachnids of Canada 18: 1–456. Available from https://publications.gc.ca/site/eng/9.811395/publication.html [accessed 25 Nov. 2022].

Young A.D., Lemmon A.R., Skevington J.H., Mengual X., Ståhls G., Reemer M., Jordaens K., Kelso S., Lemmon E.M., Hauser M., De Meyer M., Misof B. & Wiegmann B.M. 2016. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evolutionary Biology 16 (1): 143. https://doi.org/10.1186/s12862-016-0714-0

Young A.D., Skevington J.H. & Van Steenis W. 2020. Revision of the Psilota Meigen, 1822 flower flies (Diptera: Syrphidae) of Australia. Zootaxa 4737 (1): 1–126. https://doi.org/10.11646/zootaxa.4737.1.1

Published
2022-12-21
How to Cite
Huo, K.-K., Zhao, L., Mengual, X., Li, G., Liu, X., Zhao, L.-J., & Chen, Z.-N. (2022). Biema Huo & Zhao gen. nov., a new flower fly genus (Diptera, Syrphidae) from China. European Journal of Taxonomy, 852(1), 98–116. https://doi.org/10.5852/ejt.2022.852.2015
Section
Research article