Biema Huo & Zhao gen. nov., a new flower fly genus (Diptera, Syrphidae) from China
Abstract
A new flower fly genus (Diptera, Syrphidae), Biema Huo & Zhao gen. nov. from China is described based on two new species: Biema wanglangensis Huo & Zhao gen. et sp. nov. (designated as type-species) and Biema qilianensis Huo & Liu gen. et sp. nov. The new genus can easily be distinguished by the following morphological features: head, mesonotum and scutellum black; postpronotum without pile; metasternum not reduced, posterior margin shallowly concave; katepisternum only with ventral pile patches; alula narrow, as wide as basal width of cell c; male postabdomen conspicuously more swollen than other segments, surstylus and postgonite complex, phallus unsegmented. The results of our Bayesian inference and Maximum Likelihood analysis based on sequences of the Cytochrome c oxidase subunit I (COI) gene, as well as the species delimitation tests, support the separation of Biema Huo & Zhao gen. nov. from its related taxa. Additionally, an identification key to the genera of the tribes Bacchini and Melanostomini occurring in China is provided.
References
Arcaya E., Pérez-Bañón C., Mengual X., Zubcoff-Vallejo J.J. & Rojo S. 2017. Life table and predation rates of the syrphid fly Allograpta exotica, a control agent of the cowpea aphid Aphis craccivora. Biological Control 115: 74–84. https://doi.org/10.1016/j.biocontrol.2017.09.009
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A. & Drummond A.J. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10 (4): e1003537. https://doi.org/10.1371/journal.pcbi.1003537
Capella-Gutiérrez S., Silla-Martínez J.M. & Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
Chen S., Zhou Y., Chen Y. & Gu J. 2018. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34 (17): i884–i890. https://doi.org/10.1093/bioinformatics/bty560
Cheng X.Y., Huang C.M. & Yang J.K. 1998. Syrphidae. In: Flies of China: 118–223. Liaoning Science and Technology Press, Shengyang, China.
Dunn L., Lequerica M., Reid C. & Latty T. 2020. Dual ecosystem services of syrphid flies (Diptera: Syrphidae): pollinators and biological control agents. Pest Management Science 76 (6): 1973–1979. https://doi.org/10.1002/ps.5807
Fujisawa T. & Barraclough T.G. 2013. Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62 (5): 707–724. https://doi.org/10.1093/sysbio/syt033
Huo K.K. 2014. Spazigasteroides a new genus from China with a black face and scutellum in the Syrphini (Diptera: Syrphidae). Zootaxa 3755 (3): 230. https://doi.org/10.11646/zootaxa.3755.3.2
Huo K.K. 2020. Syrphidae. In: Species Catalogue of China. Volume 2. Animals. Insecta. Diptera (3). Cyclorrhaphous Brachycera (i): 30–181. Science Press.
Huo K.K., Ren G.D. & Zheng Z.M. 2007. Fauna of Syrphidae from Mt. Qinling-Bashan in China (Insecta: Diptera). Chinese Agricultural Science and Technology Press, Beijing.
Inouye D.W., Larson B.M.H., Ssymank A. & Kevan P.G. 2015. Flies and flowers III: ecology of foraging and pollination. Journal of Pollination Ecology 16: 115–133. https://doi.org/10.26786/1920-7603(2015)15
Jones M., Ghoorah A. & Blaxter M. 2011. jMOTU and Taxonerator: turning DNA barcode sequences into annotated Operational Taxonomic Units. PLoS ONE 6 (4): e19259. https://doi.org/10.1371/journal.pone.0019259
Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2): 111–120. https://doi.org/10.1007/BF01731581
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2017. Partitionfinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34 (3): 772–773. https://doi.org/10.1093/molbev/msw260
Le Peletier A.L.M. & Serville J.G.A. 1828. Entomologie, ou histoire naturelle des Crustacés, des Arachnides et des Insectes. Encyclopédie méthodique. Histoire naturelle des animaux 10: 1–833. https://doi.org/10.5962/bhl.title.82248
Matsumura S. & Adachi J. 1917. Synopsis of the economic Syrphidae of Japan. The Entomological Magazine, Kyoto 2 (4): 133–156.
Mengual X. 2020. Phylogenetic relationships of the bacchine flower flies (Diptera: Syrphidae) based on molecular characters, with a description of a new species of Melanostoma (Schiner, 1860). Contributions to Zoology 89 (2): 210–244. https://doi.org/10.1163/18759866-20191410
Mengual X., Ståhls G. & Rojo S. 2015. Phylogenetic relationships and taxonomic ranking of pipizine flower flies (Diptera: Syrphidae) with implications for the evolution of aphidophagy. Cladistics 31 (5): 491–508. https://doi.org/10.1111/cla.12105
Moerkens R., Boonen S., Wäckers F.L. & Pekas A. 2021. Aphidophagous hoverflies reduce foxglove aphid infestations and improve seed set and fruit yield in sweet pepper. Pest Management Science 77 (6): 2690–2696. https://doi.org/10.1002/ps.6342
Morales G.E. & Wolff M. 2010. Insects associated with the composting process of solid urban waste separated at the source. Revista Brasileira de Entomologia 54 (4): 645–653. https://doi.org/10.1590/S0085-56262010000400017
Nguyen L.T., Schmidt H.A., Von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
Procheş S. & Ramdhani S. 2012. The world’s zoogeographical regions confirmed by cross-taxon analyses. BioScience 62 (3): 260–270. https://doi.org/10.1525/bio.2012.62.3.7
Puillandre N., Lambert A., Brouillet S. & Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21 (8): 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Radenković S., Likov L., Ståhls G., Rojo S., Pérez-Bañón C., Smit J., Petanidou T., Van Steenis W. & Vujić A. 2020. Three new hoverfly species from Greece (Diptera: Syrphidae). Zootaxa 4830 (1): 103–124. https://doi.org/10.11646/zootaxa.4830.1.4
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
Sack P. 1922. H. Sauter’s Formosa-Ausbeute: Syrphiden II (Dipteren). Archiv für Naturgeschichte 87: 258–276. Available from https://www.biodiversitylibrary.org/part/40325 [accessed 25 Nov. 2022].
Shorthouse D. 2010. SimpleMappr, an online tool to produce publication-quality point maps. Available from https://www.simplemappr.net/ [accessed 25 Nov. 2022].
Thompson F.C. 1999. A key to the genera of the flower flies (Diptera: Syrphidae) of the Neotropical Region including descriptions of new genera and species and a glossary of taxonomic terms used. Contributions on Entomology 3: 322–373. Available from https://repository.si.edu/handle/10088/17492 [accessed 25 Nov. 2022].
Thompson F.C. & Rotheray G. 1998. Family Syrphidae. In: Contributions to a Manual of Palaearctic Diptera. Vol. 3 Higher Brachycera: 81–139. Science Herald, Budapest.
Thompson F.C. & Skevington J.H. 2014. Afrotropical flower flies (Diptera: Syrphidae). A new genus and species from Kenya, with a review of the melanostomine group of genera. Zootaxa 3847 (1): 97–114. https://doi.org/10.11646/zootaxa.3847.1.5
Vockeroth J. R. 1992. The flower flies of the subfamily Syrphinae of Canada, Alaska, and Greenland (Diptera: Syrphidae). The Insects and Arachnids of Canada 18: 1–456. Available from https://publications.gc.ca/site/eng/9.811395/publication.html [accessed 25 Nov. 2022].
Young A.D., Lemmon A.R., Skevington J.H., Mengual X., Ståhls G., Reemer M., Jordaens K., Kelso S., Lemmon E.M., Hauser M., De Meyer M., Misof B. & Wiegmann B.M. 2016. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evolutionary Biology 16 (1): 143. https://doi.org/10.1186/s12862-016-0714-0
Young A.D., Skevington J.H. & Van Steenis W. 2020. Revision of the Psilota Meigen, 1822 flower flies (Diptera: Syrphidae) of Australia. Zootaxa 4737 (1): 1–126. https://doi.org/10.11646/zootaxa.4737.1.1
Copyright (c) 2022 Ke-Ke Huo, Le Zhao, Ximo Mengual, Gang Li, Xin Liu, Lian-Jun Zhao, Zhen-Ning Chen
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.