New nematode species and genera (Nematoda: Chromadorea) from cold seeps on Hikurangi Margin, New Zealand

  • Daniel Leduc National Institute of Water and Atmospheric Research, Wellington, 14-901, New Zealand.
Keywords: Xyalidae, Linhomoeidae, Aegialoalaimidae, Desmodoridae, macrofauna

Abstract

Relatively little is known about the taxonomy and ecology of deep-sea nematode species inhabiting cold seep habitats. The available data show that cold seep nematode communities are typically characterized by low diversity and are often dominated by a single species, although no nematode taxon appears to have a strong association with methane seepage. In July 2019, a research voyage to New Zealand’s Hikurangi Margin provided an opportunity to characterize the nematode species communities of New Zealand cold seeps, which had not been investigated until now. Here, six new species and two new nematode genera of the class Chromadorea are described from macrofauna cores obtained at three seep sites (Mungaroa, Glendhu, and Uruti South) on Hikurangi Margin from 1227 to 2077 m depth. The species described here represent a wide range of feeding groups, ranging from deposit feeders (Linhomoeus pycnocricus sp. nov., Deraionema barbatum gen. et sp. nov.) to microvores (Aulostomonema abyssum gen. et sp. nov., Aegialoalaimus magnus sp. nov.) and epigrowth feeders (Desmodora parapilosa sp. nov.). The diet of Siphonolaimus curtisensillus sp. nov., which is characterized by an unusual stylet-like feeding apparatus, remains to be determined, however the presence of several different feeding modes in the species described here indicates that a range of food sources are exploited by macrofaunal nematodes at the study sites. Desmodora, Linhomoeus, and Aegialoalaimus have been reported from cold seep habitats previously, however no records of Siphonolaimus from cold seeps could be found in the literature. Aulostomonema gen. nov. does not appear to have a close association with seeps, whilst Deraionema gen. nov. appears to be restricted to the centre of the seep sites where methane seepage is likely strongest. Ongoing work on the ecology and distribution of nematode communities at the Hikurangi Margin seep sites will help determine spatial patterns in abundance and species distributions in more detail, including the identification of any species/taxa with affinities with methane seepage.

References

Coomans A. 1979. A proposal for a more precise terminology of the body regions in the nematode. Annales de la Société royale zoologique de Belgique 108: 115–117.

Cordes E.E., Bergquist D.C. & Fisher C.R. 2009. Macro-ecology of Gulf of Mexico cold seeps. Annual Reviews of Marine Science 1: 143–168. https://doi.org/10.1146/annurev.marine.010908.163912

Decraemer W., Coomans A. & Baldwin J. 2014. Morphology of Nematoda. In: Schmidt-Rhaesa A. (ed.) Handbook of Zoology Volume 2: Nematoda: 1–59. Hamburg, De Gruyter. https://doi.org/10.1515/9783110274257.399

De Ley P. & Blaxter M. 2004. A new system of Nematoda: combining morphological characters with molecular trees, and translating clades into ranks and taxa. Nematology Monographs & Perspectives 2: 633–653.

Ditlevsen H. 1926. The Danish Ingolf Expedition Volume IV. 6. Free-living nematodes. Copenhagen, Bianco Luno.

Fadeeva N., Mordukhovich V. & Zograf J. 2016. Free-living marine nematodes of Desmodorella and Zalonema (Nematoda: Desmodoridae) with description of two new species from the deep sea of the North Western Pacific. Zootaxa 4175: 501–520. https://doi.org/10.11646/zootaxa.4175.6.1

Filipjev I.N. 1946. Free-living Nematodes from the Northern Arctic Ocean. Trudy, Dreifuiushchaia ekspeditsiia Glavsevmorputi na ledokol’nom parokhode ‘‘G. Sedo’’ 1937–1940 3: 158–184.

Fonseca G. & Bezerra T.N. 2014. Order Monhysterida Filipjev, 1929. In: Schmidt-Rhaesa A. (ed) Handbook of Zoology Volume 2: Nematoda: 435–465. Hamburg, De Gruyter. https://doi.org/10.1515/9783110274257.435

Gagarin V.G. 2020. New genus and two new species of free-living nematodes (Nematoda, Monhysterida) from Artificial Reservoirs in Vietnam. Inland Water Biology 13: 14–22. https://doi.org/10.1134/S1995082920010058

Gerlach S.A. 1963. Freilebende Meeresnematoden von den Malediven II. Kieler Meeresforschung 19: 67–103.

Guilini K., Levin L.A. & Vanreusel A. 2012. Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Progress in Oceanography 96: 77–92. https://doi.org/10.1016/j.pocean.2011.10.003

Hauquier F., Ingels J., Gutt J., Raes M. & Vanreusel A. 2011. Characterisation of the nematode community of a low-activity seep in the recently ice-free shelf Larsen B area, eastern Antarctic Peninsula. PLoS ONE 6: e22240. https://doi.org/10.1371/journal.pone.0022240

Holovachov O. 2014. Order Plectida Gadea, 1973. In: Schmidt-Rhaesa A. (ed) Handbook of Zoology Volume 2: Nematoda: 487–535. Hamburg, De Gruyter. https://doi.org/10.1515/9783110274257.487

Holovachov O. 2015. Description of Aegialoalaimus bratteni sp. n. from Skagerrak and a review of the genus (Aegialoalaimidae, Nematoda incertae sedis). Biodiversity Data Journal 3: e5738. https://doi.org/10.3897/BDJ.3.e5738

Jensen P. 1991. Nine new and less known nematode species from the deep-sea benthos of the Norwegian Sea. Hydrobiologia 222: 57–76. https://doi.org/10.1007/BF00017500

Jiang W. & Huang Y. 2015. Paragnomoxyala gen. nov. (Xyalidae, Monhysterida, Nematoda) from the East China Sea. Zootaxa 4039: 467–474. https://doi.org/10.11646/zootaxa.4039.3.6

Leduc D. 2015. One new genus and five new nematode species (Monhysterida, Xyalidae) from Tonga and Kermadec Trenches, Southwest Pacific. Zootaxa 3964: 501–525. https://doi.org/10.11646/zootaxa.3964.5.1

Leduc D. 2021. New free-living nematode species and records (Chromadorea: Plectida and Desmodorida) from the edge and axis of Kermadec Trench, Southwest Pacific Ocean. PeerJ 9: e12037. https://doi.org/10.7717/peerj.12037

Leduc D., Probert P.K., Berkenbusch K., Nodder S.D. & Pilditch C.A. 2010. Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes. Deep-Sea Research I 57: 1363–1371. https://doi.org/10.1016/j.dsr.2010.07.002

Leduc D. & Zhao Z.Q. 2021. Molecular characterization of free-living nematodes from Kermadec Trench (Nematoda: Aegialoalaimidae, Xyalidae) with description of Aegialoalaimus tereticauda n. sp. Zootaxa 4949: 341–352. https://doi.org/10.11646/zootaxa.4949.2.7

Levin L.A. 2005. Ecology of cold seep sediments: Interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: An Annual Review 43: 1–46. https://doi.org/10.1201/9781420037449.ch1

Miljutin D.M., Gad G., Miljutina M.M., Mokievsky V.O., Fonseca-Genevois V. & Esteves A.M. 2010. The state of knowledge on deep-sea nematodes taxonomy: how many valid species are known down there? Marine Biodiversity 40: 143–159. https://doi.org/10.1007/s12526-010-0041-4

Moens T. & Vincx M. 1997. Observations on the feeding ecology of estuarine nematodes. Journal of the Marine Biological Association of the United Kingdom 77: 211–227. https://doi.org/10.1017/S0025315400033889

Paull C.K., Hecker B., Commeau R., Freeman-Lynde R.P., Neumann C., Corso W.P., Golubic S., Hook J.E., Sikes E. & Curray J. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226: 965–967. https://doi.org/10.1126/science.226.4677.965

Paull C.K., Jull A.J.T., Tolin L.J. & Linick T. 1985. Stable isotope evidence for chemoautotrophy in an abyssal seep community. Nature 317: 709–711. https://doi.org/10.1038/317709a0

Pape E., Bezerra T.N., Vanneste H., Heeschen K., Moodley L., Leroux F., van Breugel P. & Vanreusel A. 2011. Community structure and feeding preference of nematodes associated with methane seepage at the Darwin mud volcano (Gulf of Cadiz). Marine Ecology Progress Series 438: 71–83. https://doi.org/10.3354/meps09278

Portnova D., Mokievsky V. & Soltwedel T. 2011. Nematode species distribution patterns at the Hakon Mosby Mud Volcano (Norwegian Sea). Marine Ecology 32: 24–41.https://doi.org/10.1111/j.1439-0485.2010.00403.x

Rosli N., Leduc D., Rowden A.A., Clark M.R., Probert P.K., Berkenbusch K. & Neira C. 2016. Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance. PeerJ 4: e2154. https://doi.org/10.7717/peerj.2154

Rosli N., Leduc D., Rowden A.A., Probert P.K. & Clark M.R. 2018. Regional and sediment depth differences in nematode community structure greater than between habitats on the New Zealand margin: Implications for vulnerability to anthropogenic disturbance. Progress in Oceanography 160: 26–52. https://doi.org/10.1016/j.pocean.2017.11.006

Sharma J., Baguley J. & Bluhm B.A. & Rowe G. 2022. Do meio- and macrobenthic nematodes differ in community composition and body weight trends with depth? PLoS ONE 6: e14491. https://doi.org/10.1371/journal.pone.0014491

Somerfield P.J. & Warwick R.M. 1996. Meiofauna in marine pollution monitoring programmes: a laboratory manual. Lowestoft, Ministry of Agriculture, Fisheries and Food.

Subbotin S.A. 2014. Order Tylenchida Thorne, 1949. In: Schmidt-Rhaesa A. (ed) Handbook of Zoology Volume 2: Nematoda: 613–636. Hamburg, De Gruyter. https://doi.org/10.1515/9783110274257.613

Tchesunov A.V. 2014. Order Desmodorida De Coninck, 1965. In: Schmidt-Rhaesa A. (ed.) Handbook of Zoology Volume 2: Nematoda: 399–434. Hamburg, De Gruyter. https://doi.org/10.1515/9783110274257.399

Vanreusel A., Fonseca G., Danovaro R., da Silva M.C., Esteves A.M., Ferrero T., Gad G., Galtsova V., Gambi C., Da Fonsêca Genevois V., Ingels J., Ingole B., Lampadariou N., Merckx B., Miljutin D., Miljutina M., Muthumbi A., Netto S., Portnova D., Radziejewska T., Raes M., Tchesunov A., Vanaverbeke J., Van Gaever S., Venekey V., Bezerra T.N., Flint H., Copley J., Pape E., Zeppilli D., Martinez P.A. & Galeron J. 2010a. The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Marine Ecology 31: 6–20. https://doi.org/10.1111/j.1439-0485.2009.00352.x

Vanreusel A., De Groote A., Gollner S. & Bright M. 2010b. Ecology and Biogeography of free-living nematodes associated with chemosynthetic environments in the deep sea: A review. PLoS ONE 5: e12449. https://doi.org/10.1371/journal.pone.0012449

Venekey V., Gheller P.F., Maria T.F., Brustolin M.C., Kandratavicius N., Vieira D.C., Brito S., Souza G.S. & Fonseca G. 2014. The state of the art of Xyalidae (Nematoda, Monhysterida) with reference to the Brazilian records. Marine Biodiversity 44: 367–390. https://doi.org/10.1007/s12526-014-0226-3

Verschelde D., Gourbault N. & Vincx M. 1998. Revison of Desmodora with descriptions of new desmodorids (Nematoda) from hydrothermal vents of the Pacific. Journal of the Marine Biological Association of the United Kingdom 78: 75–112. https://doi.org/10.1017/S0025315400039977

Yu T. & Xu K. 2015. Two new nematodes, Pseudelzalia longiseta gen. nov., sp. nov. and Paramonohystera sinica sp. nov. (Monhysterida: Xyalidae), from sediment in the East China Sea. Journal of Natural History 49: 509–526. https://doi.org/10.1080/00222933.2014.953224

Zograf J., Trebukhova Y. & Pavlyuk O. 2015. New deep-sea free-living nematodes from the Sea of Japan: the genera Siphonolaimus and Halichoanolaimus Nematoda: Chromadorea) with keys to species identifications. Zootaxa 3911: 63–80. https://doi.org/10.11646/zootaxa.3911.1

Published
2023-01-10
How to Cite
Leduc, D. (2023). New nematode species and genera (Nematoda: Chromadorea) from cold seeps on Hikurangi Margin, New Zealand. European Journal of Taxonomy, 856(1), 1-45. https://doi.org/10.5852/ejt.2023.856.2025
Section
Research article