Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae)

  • Bernhard A. Huber Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany https://orcid.org/0000-0002-7566-5424
  • Guanliang Meng Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany
  • Alejandro Valdez-Mondragón Laboratory of Arachnology (LATLAX), Institute of Biology, Universidad Nacional Autónoma de México-Tlaxcala, San Miguel Contla, Santa Cruz Tlaxcala, Tlaxcala, México
  • Jiří Král Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
  • Ivalú M. Ávila Herrera Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
  • Leonardo S. Carvalho Campus Amílcar Ferreira Sobral, Universidade Federal do Piauí, Floriano, Piauí, Brazil
Keywords: Ninetinae, Mexico, barcodes, karyotype, environmental niche

Abstract

The North American-Caribbean genera Pholcophora Banks, 1896 and Tolteca Huber, 2000 are representatives of Ninetinae, a group of small, cryptic, and thus poorly known pholcid spiders. We present the first comprehensive revisions of the two genera, including extensive SEM data and descriptions of seven new species from Mexico (Pholcophora mazatlan Huber sp. nov., P. papanoa Huber sp. nov., P. tehuacan Huber sp. nov., Tolteca huahua Huber sp. nov., T. manzanillo Huber sp. nov., T. oaxaca Huber sp. nov., and T. sinnombre Huber sp. nov.). We add new CO1 sequences of nine species to previously published molecular data and use these for a preliminary analysis of relationships. We recover a North American-Caribbean clade including ‘true’ (mainland) Pholcophora, Tolteca (Mexico), and a Caribbean clade consisting of the genus Papiamenta Huber, 2000 (Curaçao) and Caribbean ‘Pholcophora’. First karyotype data for Tolteca (2n♂ = 13, X1X2Y and 15, X1X2Y, respectively) reveal a strong reduction of the number of chromosome pairs within the North American-Caribbean clade, and considerable karyotype differentiation among congeners. This agrees with considerable CO1 divergence among species of Tolteca but contrasts with very inconspicuous morphological divergence. Environmental niche analyses show that the widespread P. americana Banks, 1896 (western USA, SW Canada) occupies a very different niche than its Mexican congeners and other close relatives. Caribbean taxa also have a low niche overlap with ‘true’ Pholcophora and Tolteca, supporting the idea that Caribbean ‘Pholcophora’ are taxonomically misplaced.

References

Astrin J.J., Höfer H., Spelda J., Holstein J., Bayer S., Hendrich L., Huber B.A., Kielhorn K.-H., Krammer H.-J., Lemke M., Monje J.C., Morinière J., Rulik B., Petersen M., Janssen H. & Muster C. 2016. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One 11 (9): e0162624. https://doi.org/10.1371/journal.pone.0162624

Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., Haddad C.R., Hiřman M., Koubová M., Sadílek D. & Huber B.A. 2021. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecology and Evolution 21: 75. https://doi.org/10.1186/s12862-021-01750-8

Ayala F. & Coluzzi M. 2005. Chromosome speciation: humans, Drosophila, and mosquitoes. Proceedings of the National Academy of Sciences of the USA 102: 6535–6542. https://doi.org/10.1073/pnas.0501847102

Banks N. 1896. New North American spiders and mites. Transactions of the American Entomological Society 23: 57–77. Available from https://www.biodiversitylibrary.org/page/7508724 [accessed 26 May 2023].

Bennett R. 2014. COSEWIC assessment and status report on the northwestern cellar spider Psilochorus hesperus in Canada. Committee on the Status of Endagered Wildlife in Canada, Ottawa. Available from https://wildlife-species.canada.ca/species-risk-registry/default.asp?lang=En&n=092035C0-1 [accessed 26 May 2023].

Brignoli P.M. 1981. Studies on the Pholcidae, I. Notes on the genera Artema and Physocyclus (Araneae). Bulletin of the American Museum of Natural History 170: 90–100.

Broennimann O., Treier U.A., Müller-Schärer H., Thuiller W., Peterson A.T. & Guisan A. 2007. Evidence of climatic niche shift during biological invasion. Ecology Letters 10: 701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x

Broennimann O., Fitzpatrick M.C., Pearman P.B., Petitpierre B., Pellissier L., Yoccoz N.G., Thuiller W., Fortin M.J., Randin C., Zimmermann N.E., Graham C.H. & Guisan A. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x

Broennimann O., Ursenbacher S., Meyer A., Golay P., Monney J.-C., Schmocker H., Guisan A. & Dubey S. 2014. Influence of climate on the presence of colour polymorphism in two montane reptile species. Biology Letters 10 (11): 20140638. https://doi.org/10.1098/rsbl.2014.0638

Brown B.V. 1993. A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times 11: 10.

Cala-Riquelme F., Wiencek P., Florez-Daza E., Binford G.J. & Agnarsson I. 2022. Island-to-island vicariance, founder-events and within-area speciation: the biogeographic history of the Antillattus clade (Salticidae: Euophryini). Diversity 14: 224. https://doi.org/10.3390/d14030224

Capella-Gutiérrez S., Silla-Martínez J.M. & Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973. https://doi.org/10.1093/bioinformatics/btp348

Chamberland L., McHugh A., Kechejian S., Binford G.J., Bond J.E., Coddington J., Dolman G., Hamilton C.A., Harvey M.S., Kuntner M. & Agnarsson I. 2018. From Gondwana to GAARlandia: evolutionary history and biogeography of ogre-faced spiders (Deinopis). Journal of Biogeography 45: 2442–2457. https://doi.org/10.1111/jbi.13431

Cock P.J., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B. & de Hoon M.J. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. https://doi.org/10.1093/bioinformatics/btp163

Crawley M.J. 2012. The R Book. Wiley, UK. Available from http://www.bio.ic.ac.uk/research/mjcraw/therbook/index.htm [accessed 26 May 2023].

Crowther T.W., Glick H.B., Covey K.R., Bettigole C., Maynard D.S., Thomas S.M., Smith J.R., Hintler G., Duguid M.C., Amatulli G., Tuanmu M.-N., Jetz W., Salas C., Stam C., Piotto D., Tavani R., Green S., Bruce G., Williams S.J., Wiser S.K., Huber M.O., Hengeveld G.M., Nabuurs G.-J., Tikhonova E., Borchardt P., Li, C.-F., Powrie L.W., Fischer M., Hemp A., Homeier J., Cho P., Vibrans A.C., Umunay P.M., Piao S.L., Rowe C.W., Ashton M.S., Crane P.R. & Bradford M.A. 2015. Mapping tree density at a global scale. Nature 525: 201–205. https://doi.org/10.1038/nature14967

Cuervo P.F., Flores F.S., Venzal J.M. & Nava S. 2021. Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. Journal of Biogeography 48: 2865–2876. https://doi.org/10.1111/jbi.14245

Dederichs T.M., Huber B.A. & Michalik P. 2022. Evolutionary morphology of sperm in pholcid spiders (Pholcidae, Synspermiata). BMC Zoology 7: 52. https://doi.org/10.1186/s40850-022-00148-3

Di Cola V., Broennimann O., Petitpierre B., Breiner F.T., D’Amen M., Randin C., Engler R., Pottier J., Pio D., Dubuis A., Pillissier L., Mateo R.G., Hordijk W., Salamin N. & Guisan A. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40: 774–787. https://doi.org/10.1111/ecog.02671

Eberle J., Dimitrov D., Valdez-Mondragón A. & Huber B.A. 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: 141. https://doi.org/10.1186/s12862-018-1244-8

Esposito L.A. & Prendini L. 2019. Island ancestors and new world biogeography: a case study from the scorpions (Buthidae: Centruroidinae). Scientific Reports 9 (1): 3500. https://doi.org/10.1038/s41598-018-33754-8

Fick S.E. & Hijmans R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. https://doi.org/10.1002/joc.5086

Foelix R.F. & Chu-Wang I.-W. 1973. The morphology of spider sensilla. II. Chemoreceptors. Tissue and Cell 5: 461–478. https://doi.org/10.1016/S0040-8166(73)80038-2

Forman M., Nguyen P., Hula P. & Král J. 2013. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenetic and Genome Research 141: 43–49. https://doi.org/10.1159/000351041

Gertsch W.J. 1971. A report on some Mexican cave spiders. Association of Mexican Cave Studies, Bulletin 4: 47–111.

Gertsch W.J. 1977. Report on cavernicole and epigean spiders from the Yucatan Peninsula. Association of Mexican Cave Studies, Bulletin 6: 103–131.

Gertsch W.J. 1982. The spider genera Pholcophora and Anopsicus (Araneae, Pholcidae) in North America, Central America and the West Indies. Association of Mexican Cave Studies, Bulletin 8: 95–144 / Texas Memorial Museum, Bulletin 28: 95–144.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Hazzi N.A. & Hormiga G. 2021. Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). ZooKeys 1022: 13–50. https://doi.org/10.3897/zookeys.1022.60571

Herrando-Moraira S., Nualart N., Herrando-Moraira A., Chung M.Y., Chung M.G. & López-Pujol J. 2019. Climatic niche characteristics of native and invasive Lilium lancifolium. Scientific Reports 9 (1): 14334. https://doi.org/10.1038/s41598-019-50762-4

Hijmans R.J. 2022. raster: geographic data analysis and modeling. R package version 3.6-3. Available from https://CRAN.R-project.org/package=raster [accessed 26 May 2023].

Hof A.R., Jansson R. & Nilsson C. 2012. The usefulness of elevation as a predictor variable in species distribution modelling. Ecological Modelling 246: 86–90. https://doi.org/10.1016/j.ecolmodel.2012.07.028

Hortal J., de Bello F., Diniz-Filho J.A.F., Lewinsohn T.M., Lobo J.M. & Ladle R.J. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annual Review of Ecology, Evolution, and Systematics 46: 523–549. https://doi.org/10.1146/annurev-ecolsys-112414-054400

Huber B.A. 2000. New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254: 1–348. https://doi.org/brh26h

Huber B.A. 2021. Beyond size: sexual dimorphisms in pholcid spiders. Arachnology 18: 656–677. https://doi.org/10.13156/arac.2020.18.7.656

Huber B.A. & Brescovit A.D. 2003. Ibotyporanga Mello-Leitão: tropical spiders in Brazilian semi-arid habitats (Araneae: Pholcidae). Insect Systematics and Evolution 34: 15–20. https://doi.org/10.1163/187631203788964926

Huber B.A. & Carvalho L.S. 2019. Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa 4546: 1–96. https://doi.org/10.11646/zootaxa.4546.1.1

Huber B.A. & Eberle J. 2021. Mining a photo library: eggs and egg sacs in a major spider family. Invertebrate Biology 140: e12349. https://doi.org/10.1111/ivb.12349

Huber B.A. & Villarreal O. 2020. On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy 718: 1–317. https://doi.org/10.5852/ejt.2020.718.1101

Huber B.A., Eberle J. & Dimitrov D. 2018. The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789: 51–101. https://doi.org/10.3897/zookeys.789.22781

Huber B.A., Meng G., Král J., Ávila Herrera I.M., Izquierdo M.A. & Carvalho L.S. 2023. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society 198 (2): 534–591. https://doi.org/10.1093/zoolinnean/zlac100

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kořínková T. & Král J. 2013. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W. (ed.) Spider Ecophysiology: 159–172. Springer, Berlin.

Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A. & Ribera Almerje C. 2006. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. https://doi.org/10.1007/s10577-006-1095-9

Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G. & Hedin M. 2013. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109: 377–408. https://doi.org/10.1111/bij.12056

Král J., Ávila Herrera I.M., Šťáhlavský F., Sadílek D., Pavelka J., Chatzaki M. & Huber B.A. 2022. Karyotype differentiation and male meiosis in European clades of the spider genus Pholcus (Araneae, Pholcidae). Comparative Cytogenetics 16 (4): 185–209. https://doi.org/10.3897/CompCytogen.v16i4.85059

Lee J.G., Lee J.H., Choi D.Y., Park S.J., Kim A.Y. & Kim S.K. 2021. Five new species of the genus Pholcus Walckenaer (Araneae, Pholcidae) from South Korea. Zootaxa 5052: 61–77. https://doi.org/10.11646/zootaxa.5052.1.3

Letunic I. & Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. https://doi.org/10.1093/nar/gkab301

Levan A.K., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Lomazi R.L., Araujo D., Carvalho L.S. & Schneider M.C. 2018. Small pholcids (Araneae: Synspermiata) with big surprises: the lowest diploid number in spiders with monocentric chromosomes. Journal of Arachnology 46: 45–49. https://doi.org/10.1636/JoA-S-17-033R2.1

McHugh A., Yablonsky C., Binford G. & Agnarsson I. 2014. Molecular phylogenetics of Caribbean Micrathena (Araneae: Araneidae) suggests multiple colonization events and single island endemism. Invertebrate Systematics 28: 337–349. https://doi.org/10.1071/IS13051

Mello-Leitão C. de. 1944. Aranhas da região Amazônica. Boletim do Museu Nacional, Rio de Janeiro (Nova Série, Zoologia) 25: 1–12.

Minh B.Q., Nguyen M.A.T. & von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/mst024

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A. & Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015

Morrone J.J., Escalante T. & Rodríguez-Tapia G. 2017. Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277: 277–279. https://doi.org/10.11646/zootaxa.4277.2.8

Parida B.B. & Sharma N.N. 1987. Chromosome number, sex mechanism and genome size in 27 species of Indian spiders. Chromosome Information Service 43: 11–13.

Paula-Neto E., Cella D.M., Araujo D., Brescovit A.D. & Schneider M.C. 2017. Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae). Journal of Arachnology 45: 123–128. https://doi.org/10.1636/M14-69.1

Ratnasingham S. & Hebert P.D.N. 2007. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

Reis R. Jr, Oliveira M.L. & Borges G.R.A. 2015. RT4Bio: R Tools for Biologists. Available from https://sourceforge.net/projects/rt4bio/ [accessed 1 Jun. 2022].

Revell L. 2021. A variable-rate quantitative trait evolution model using penalized-likelihood Brownian motion. PeerJ 9:e11997. https://doi.org/10.7717/peerj.11997

Rieseberg L.H. 2001. Chromosomal rearrangements and speciation. Trends in Ecology and Evolution 7: 351–358. https://doi.org/10.1016/S0169-5347(01)02187-5

Schoener T.W. 1970. Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51: 408–418. https://doi.org/10.2307/1935376

Segura-Hernández L., Barrantes G., Chacón-Madrigal E. & García-Rodríguez A. 2022. Species distribution models and climatic niche comparisons provide clues on the geographic origin of a spider invasion in the Americas. Biological Invasions 25: 251–265. https://doi.org/10.1007/s10530-022-02904-5

Silva D.P., Vilela B., Buzatto B.A., Moczek A.P. & Hortal J. 2016. Contextualized niche shifts upon independent invasions by the dung beetle Onthophagus taurus. Biological Invasions 18: 3137–3148. https://doi.org/10.1007/s10530-016-1204-4

Simard M., Pinto N., Fisher J.B. & Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research 116: G04021. https://doi.org/10.1029/2011JG001708

Simon E. 1890. Étude sur les arachnides de l’Yemen. Annales de la Société entomologique de France 6: 77–124.

Simon E. 1893. Histoire Naturelle des Araignées. 2nd Ed. Encyclopédie Roret, Paris. https://doi.org/10.5962/bhl.title.51973

Srivathsan A., Lee L., Katoh K., Hartop E., Kutty S.N., Wong J., Yeo D. & Meier R. 2021. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biology 19: 217. https://doi.org/10.1186/s12915-021-01141-x

Steenwyk J.L., Buida III T.J., Li Y., Shen X.-X. & Rokas A. 2020. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18: e3001007. https://doi.org/10.1371/journal.pbio.3001007

Suyama M., Torrents D. & Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609–W612. https://doi.org/10.1093/nar/gkl315

Suzuki S. 1954. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. Journal of Science of Hiroshima University 2: 23–136.

Tabei Y., Kiryu H., Kin T. & Asai K. 2008. A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 9: 33. https://doi.org/10.1186/1471-2105-9-33

Talavera G. & Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56: 564–577. https://doi.org/10.1080/10635150701472164

Truett G., Heeger P., Mynatt R., Truett A., Walker J. & Warman M.J.B. 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52–54. https://doi.org/10.2144/00291bm09

Warren D.L., Glor R.E. & Turelli M. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x

Wunderlich J. 1988. Die fossilen Spinnen im Dominikanischen Bernstein. Beiträge zur Araneologie 2: 1–378.

Yang C., Zheng Y., Tan S., Meng G., Rao W., Yang C., Bourne D.G,. O’Brien P.A., Xu J., Liao S., Chen A., Chen X., Jia X., Zhang A. & Liu S. 2020. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21: 862. https://doi.org/10.1186/s12864-020-07255-w

Yao Z., Luo Y. & Li S. 2021. Tangguoa gen. nov., one new genus of daddy-long-leg spiders (Araneae: Pholcidae) from southern China. Zootaxa 4938: 131–140. https://doi.org/10.11646/zootaxa.4938.1.7

Zhu W. & Li S. 2021. Six new species of the spider genus Belisana (Araneae: Pholcidae) from Southeast Asia. Zootaxa 4963: 115–137. https://doi.org/10.11646/zootaxa.4963.1.5

Published
2023-07-17
How to Cite
Huber, B. A., Meng, G., Valdez-Mondragón, A., Král, J., Ávila Herrera, I. M., & Carvalho, L. S. (2023). Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae). European Journal of Taxonomy, 880(1), 1–89. https://doi.org/10.5852/ejt.2023.880.2173
Section
Monograph