Molecular and morphological studies reveal a new species of Panaeolus (Agaricales, Basidiomycota) from Punjab, Pakistan

  • Muhammad Asif Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan https://orcid.org/0000-0001-7327-2072
  • Qudsia Firdous Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan https://orcid.org/0000-0002-3096-0198
  • Aiman Izhar Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan https://orcid.org/0000-0002-8739-2881
  • Abdul Rehman Niazi Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan https://orcid.org/0000-0002-1118-1148
  • Samina Sarwar Department of Botany, Lahore College for Women University, Lahore, 54590, Pakistan
  • Abdul Nasir Khalid Fungal Biology and Systematics Research Laboratory, Institute of Botany, University of the Punjab, Quaid-e-Azam Campus 54590, Lahore, Pakistan https://orcid.org/0000-0002-5635-8031
Keywords: Agarics, hallucinogenic, molecular systematics, saprotrophic, taxonomy

Abstract

Panaeolus punjabensis M. Asif, Q. Firdous, A. Izhar, Niazi & Khalid sp. nov. was collected from three different localities (Bahawalnagar, Kasur, and Lahore) in Punjab, Pakistan. Morphological observations and phylogenetic analyses based on nuclear encoded internal transcribed spacers (ITS1-5.8S-ITS2 = ITS) and D1/D2 domain of large subunit (28S) rDNA confirmed the taxonomic distinctness of this species. The new species is potentially hallucinogenic and characterized by a parabolic pileus with a light brown center, broadly fusiform basidiospores, presence of cheilocystidia, pileocystidia, and caulocystidia, and absence of pleurocystidia and clamp connections. The DNA sequences of the species clustered together in a well-supported distinct clade. We present a detailed description, photographs, and line drawings, and elucidate and discuss the phylogenetic position of the new species. Morphological comparisons with phylogenetically and morphologically allied species are discussed.

References

Abraham W.R. 2007. Bioactive sesquiterpenes produced from fungi: Possibilities and limitations. In: Rai M. (ed.) Mycotechnology: Present Status and Future Prospects: 264–287. I.K. International, Delhi, India.

Adeniyi M., Odeyemi Y. & Odeyemi O. 2018. Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve. Biodiversitas Journal of Biological Diversity 19 (1): 285–295. https://doi.org/10.13057/biodiv/d190139

Ahmad A., Khan M., Shah S.H.H., Kamran M., Wajid S.A., Amin M., Khan A., Arshad M.N., Cheema M.J.M., Saqid Z.A. & Ullah R. 2019. Agro-ecological zones of Punjab, Pakistan. Food and Agriculture Organization of United Nations, Rome.

Ahmad S., Iqbal S.H. & Khalid A.N. 1997. Fungi of Pakistan. Sultan Ahmad Mycological Society of Pakistan, Department of Botany, University of the Punjab, Quaid-e-Azam Campus, Lahore.

Ahmed N., Mahmood A., Mahmood A., Tahir S.S., Bano A., Malik R.N., Hassan S. & Ishtiaq M. 2014a. Relative importance of indigenous medicinal plants from Layyah district, Punjab Province, Pakistan. Journal of Ethnopharmacology 155 (1): 509–523. https://doi.org/10.1016/j.jep.2014.05.052

Ahmed N., Mahmood A., Tahir S.S., Bano A., Malik R.N., Hassan S. & Ashraf A. 2014b. Ethnomedicinal knowledge and relative importance of indigenous medicinal plants of Cholistan desert, Punjab Province, Pakistan. Journal of Ethnopharmacology 155 (2): 1263–1275. https://doi.org/10.1016/j.jep.2014.07.007

Abraham W.R. 2007. Bioactive sesquiterpenes produced from fungi: Possibilities and limitations. In: Rai M. (ed.) Mycotechnology: Present Status and Future Prospects: 264–287. I.K. International, Delhi, India.

Adeniyi M., Odeyemi Y. & Odeyemi O. 2018. Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve. Biodiversitas Journal of Biological Diversity 19 (1): 285–295. https://doi.org/10.13057/biodiv/d190139

Akata I., Altuntaş D. & Kabaktepe Ş. 2019. Fungi determined in Ankara University Tandoğan Campus area (Ankara-Turkey). Trakya University Journal of Natural Sciences 20 (1): 47–55. https://doi.org/10.23902/trkjnat.521256

Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215 (3): 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

Aman N., Khalid A.N. & Moncalvo J.-M. 2022. A compendium of macrofungi of Pakistan by ecoregions. MycoKeys 89: 171–233. https://doi.org/10.3897/mycokeys.89.81148

Amandeep K., Atri N.S. & Munruchi K. 2014. Two new species of Panaeolus (Psathyrellaceae, Agaricales) from coprophilous habitats of Punjab, India. Mycosphere 3: 125–132. https://doi.org/10.5943/mycosphere/4/3/13

Andersson C., Kristinsson J. & Gry J. 2009. Occurrence and Use of Hallucinogenic Mushrooms Containing Psilocybin Alkaloids. Nordic Council of Ministers.

Anwar W., Khan S.N., Tahira J.J. & Suliman R. 2012. Parthenium hysterophorus: an emerging threat for Curcuma longa fields of Kasur District, Punjab, Pakistan. Pakistan Journal of Weed Science Research 18: 91–97.

Bas C. 1969. Morphology and subdivision of Amanita and a monograph of its section Lepidella. Persoonia 5: 96–97. https://repository.naturalis.nl/pub/531781

Belda M., Holtanová E., Halenka T. & Kalvová J. 2014. Climate classification revisited: from Köppen to Trewartha. Climate Research 59: 1–13. https://doi.org/10.3354/cr01204

Broussal M. & Dumesny E. 2015. Une récolte française de Stagnicola perplexa. Bulletin de la Société Mycologique de France 131: 237–243.

Cai Q., Chen Z.H., He Z.M., Luo H. & Yang Z.L. 2018. Lepiota venenata, a new species related to toxic mushroom in China. Journal of Fungal Research 16: 63–69.

Chapela I.H., Rehner S.A., Schultz T.R. & Mueller U.G. 1994. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. Science 266: 1691–1694.

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109

Desjardin D.E. & Perry B.A. 2017. Panaeolus antillarum (Basidiomycota, Psathyrellaceae) from wild elephant dung in Thailand. Current Research in Environmental & Applied Mycology 7: 275–281. https://doi.org/10.5943/cream/7/4/4

Doveri F. 2011. Additions to “Fungi Fimicoli Italici”: An update on the occurrence of coprophilous Basidiomycetes and Ascomycetes in Italy with new records and descriptions. Mycosphere 2: 331–427.

Drehmel D., Moncalvo J.M. & Vilgalys R. 1999. Molecular phylogeny of Amanita based on large-subunit ribosomal DNA sequences: implications for taxonomy and character evolution. Mycologia 91: 610–618. https://doi.org/10.1080/00275514.1999.12061059

Drummond A.J & Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. https://doi.org/10.1186/1471-2148-7-214

Durrani A.Z. & Shakoori A.R. 2009. Study on ecological growth conditions of cattle Hyalomma ticks in Punjab, Pakistan. Iranian Journal of Parasitology 4: 24–30.

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Ediriweera S., Wijesundera R., Nanayakkara C. & Weerasena J. 2015. First report of Panaeolus sphinctrinus and Panaeolus foenisecii (Psathyrellaceae, Agaricales) on elephant dung from Sri Lanka. Frontiers in Environmental Microbiology 1: 19–23. https://doi.org/10.11648/j.fem.20150102.12

Garnica S., Weiss M., Walther G. & Oberwinkler F. 2007. Reconstructing the evolution of agarics from nuclear gene sequences and basidiospore ultrastructure. Mycological Research 111: 1019–1029. https://doi.org/10.1016/j.mycres.2007.03.019

Gerhardt E. 1996. Taxonomische Revision der Gattungen Panaeolus und Panaeolina (Fungi, Agaricales, Coprinaceae). Bibliotheca Botanica 147: 1–149.

Gillet C.C. 1878. Les Hyménomycètes ou description de tous les champignons qui croissent en France. Description et iconographie, propriétés utiles ou vénéneuses: 561–828. JB Baillère & fils, Paris.

Halama M., Witkowska D., Jasicka-misiak I. & Poliwoda A. 2014. An adventive Panaeolus antillarum in Poland (Basidiomycota, Agaricales) with notes on its taxonomy, geographical distribution, and ecology. Cryptogamie, Mycologie 35: 3–22. https://doi.org/10.7872/crym.v35.iss1.2014.3

Han K.S., Volk T.J. & Kim H.K. 2010. Identification of Lacrymaria velutina (Pers. ex Fr.) Konrad & Maubl. from Micheon-myeon, Jinju-city, Korea. Mycobiology 38: 249–255.

He Z., Su Y., Li S., Long P., Zhang P. & Chen Z. 2019. Development and evaluation of isothermal amplification methods for rapid detection of lethal Amanita species. Frontiers in Microbiology 10: 1523. https://doi.org/10.3389/fmicb.2019.01523

Hora F.B. 1960. New check list of British agarics and boleti: part IV. Validations, new species and critical notes. Transactions of the British Mycological Society 43: 440–459. https://doi.org/10.1016/S0007-1536(60)80067-8

Hu Y., Mortimer P.E., Karunarathna S.C., Raspé O., Promputtha I., Yan K., Xu J. & Hyde K. 2020. A new species of Panaeolus (Agaricales, Basidiomycota) from Yunnan, Southwest China. Phytotaxa 434: 22–34. https://doi.org/10.11646/phytotaxa.434.1.3

Jayasiri S.C., Hyde K.D., Ariyawansa H.A., Bhat J., Buyck B., Cai L., Dai Y.-C., Abd-Elsalam K.A., Ertz D., Hidayat I., et al. 2015. The faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal diversity 74: 3–18. https://doi.org/10.1007/s13225-015-0351-8

Kalichman J., Kirk P.M. & Matheny P.B. 2020. A compendium of generic names of agarics and Agaricales. Taxon 69: 425–447. https://doi.org/10.1002/tax.12240

Karunarathna S.C., Mortimer P.E., Xu J. & Hyde K.D. 2017. Overview of research of mushrooms in Sri Lanka. Revista Fitotecnia Mexicana 40: 399–403. https://www.redalyc.org/articulo.oa?id=61054247004

Kaur A., Atri N.S. & Kaur M. 2014. Diversity of coprophilous species of Panaeolus (Psathyrellaceae, Agaricales) from Punjab, India. Biodiversitas Journal of Biological Diversity 15: 115–130. https://doi.org/10.13057/biodiv/d150202

Kuo M. 2007. The genus Panaeolus. Retrieved from the MushroomExpert.Com. Website: http://www.mushroomexpert.com/panaeolus.html [accessed 25 Apr. 2022].

Lateef M., Gondal K.Z., Younas M., Sarwar M., Mustafa M.I. & Bashir M.K. 2008. Milk production potential of purebred Holstein Friesian and Jersey cows in subtropical environment of Pakistan. Pakistan Veterinary Journal 28: 9–12.

Lee J.CI., Cole M. & Linacre A. 2000. Identification of hallucinogenic fungi from the genera Psilocybe and Panaeolus by amplified fragment length polymorphism. Electrophoresis: An International Journal 21: 1484–1487.

Li H., Ma X., Mortimer P.E., Karunarathna S.C., Xu J. & Hyde K.D. 2016. Phallus haitangensis, a new species of stinkhorn from Yunnan Province, China. Phytotaxa 280: 116–128. https://doi.org/10.11646/phytotaxa.280.2.2

Liang J.F., Yang Z.L. & Xu D.P. 2011. A new species of Lepiota from China. Mycologia 103: 820–830. https://doi.org/10.3852/10-216

Liang J.F., Yu F., Lu J.K., Wang S.K. & Song J. 2018. Morphological and molecular evidence for two new species in Lepiota from China. Mycologia 110: 494–501. https://doi.org/10.1080/00275514.2018.1464333

Lundell S. & Nannfeldt J.A. 1938. Fungi Exsiccati Suecici. Fasc. 11–12: 501–600. Uppsala University.

Ma T. 2014. Taxonomy of Psilocybe s.l. and Panaeolus in Yunnan, Southwest China, with Notes on Related Genus Protostropharia. Chinese Academy of Forestry, China.

Malysheva E., Moreno G., Villarreal M., Malysheva V. & Svetasheva T. 2019. The secotioid genus Galeropsis (Agaricomycetes, Basidiomycota): a real taxonomic unit or ecological phenomenon? Mycological Progress 18: 805–831. https://doi.org/10.1007/s11557-019-01490-6

Maruyama T., Yokoyama K., Makino Y. & Goda Y. 2003. Phylogenetic relationship of psychoactive fungi based on the rRNA gene for a large subunit and their identification using the TaqMan assay. Chemical and Pharmaceutical Bulletin 51: 710–714.

Maruyama T., Kawahara N., Yokoyama K., Makino Y., Fukiharu T. & Goda Y. 2006. Phylogenetic relationship of psychoactive fungi based on rRNA gene for a large subunit and their identification using the TaqMan assay (II). Forensic Science International 163: 51–58. https://doi.org/10.1016/j.forsciint.2004.10.028

Miller M.A., Holder M.T., Vos R., Midford P.E., Liebowvitz T., et al. 2010. The CIPRES Portals. Available from https://www.phylo.org/ [accessed 17 Apr. 2022].

Moser M. 1984. Panaeolus alcidis, a new species from Scandinavia and Canada. Mycologia 76: 551–554. https://doi.org/10.1080/00275514.1984.12023878

Munsell. 1975. Munsell soil color charts. Macbeth Division of Kollmorgen Corporation. Baltimore, Maryland.

Nasir Y.J., Rafiq R.A. & Roberts T.J. 1995. Wildflowers of Pakistan. Oxford University Press.

Örstadius L., Ryberg M. & Larsson E. 2015. Molecular phylogenetics and taxonomy in Psathyrellaceae (Agaricales) with focus on psathyrelloid species: introduction of three new genera and 18 new species. Mycological Progress 14: 1–42.

Osmundson T.W., Robert V.A., Schoch C.L., Baker L.J., Smith A., Robich G., Mizzan L. & Garbelotto M.M. 2013. Filling gaps in biodiversity knowledge for macrofungi: contributions and assessment of an herbarium collection DNA barcode sequencing project. PLoS One 8: e62419. https://doi.org/10.1371/journal.pone.0062419

Peel M.C., Finlayson B.L. & McMahon T.A. 2007. Updated world map of the Köppen Geiger climate classification. Hydrology and Earth System Science 11: 1633–1644. https://doi.org/10.5194/hess-11-1633-2007

Porebski S., Bailey L.G. & Baum B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15: 8–15.

Quélet L. 1872. Les Champignons du Jura et des Vosges. Mémoires de la Société d’Émulation de Montbéliard 2: 43–332.

Rambaut A. 2014. FigTree 1.4.2 software. Institute of Evolutionary Biology, University of Edinburgh [accessed 11 Mar. 2022].

Razaq A., Khalid A.N. & Ilyas S. 2012. Molecular identification of Lyophyllum connatum and Paneolus sphinctrinus (Basidiomycota, Agaricales) from Himalyan moist temperate forests of Pakistan. International Journal of Agriculture and Biology 14: 1001–1004.

Seidmohammadi E., Abbasi S. & Asef M.R. 2019. The first report of Panaeolus olivaceus and Panaeolus guttulatus from Iran. Taxonomy and Biosystematics 11: 23–30.

Senn-Irlet B., Nyffenegger A. & Brenneisen R. 1999. Panaeolus bisporus – an adventitious fungus in central Europe, rich in psilocin. Mycologist 13: 176–179.

Sette L.D., Passarini M.R.Z., Rodrigues A., Leal R.R., Simioni K.C.M., Nobre F.S., De Brito B.R., Da Rocha A.J. & Pagnocca F.C. 2010. Fungal diversity associated with Brazilian energy transmission towers. Fungal Diversity 44: 53–63. https://doi.org/10.1007/s13225-010-0048-y

Siddiqui R., Siddiqui S., Javid K. & Akram M. 2020. Estimation of rainwater harvesting potential and its utility in the educational institutes of Lahore using GIS techniques. Pakistan Geographical Review 75: 1–9.

Silva-Filho A.G.S., Seger C. & Cortez V.G. 2019. Panaeolus (Agaricales) from Western Paraná state, South Brazil, with a description of a new species, Panaeolus sylvaticus. Edinburgh Journal of Botany 76: 297–309. https://doi.org/10.1017/S0960428619000064

Singer R. 1986. The Agaricales in Modern Taxonomy. 4th Ed. Koeltz Scientific Books, Federal Republic of Germany.

Singer R. & De Leon P. 1982. Galeropsidaceae west of the Rocky Mountains. Mycotaxon 14: 82–90.

Stamets P. 1996. Psilocybin Mushrooms of the World. Ten Speed Press, Berkeley, California, USA.

Strauss D., Ghosh S., Murray Z. & Gryzenhout M. 2022. An overview on the taxonomy, phylogenetics and ecology of the psychedelic genera Psilocybe, Panaeolus, Pluteus and Gymnopilus. Frontiers in Forests and Global Change 5: 813998. https://doi.org/10.3389/ffgc.2022.813998

Suliaman S.Q. 2019. First record of three mycofungal Basidiomycota from Iraq. Plant Archives 19: 313–318.

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739. https://doi.org/10.1093/molbev/msr121

Tanveer M., Ahmed S.R., Aslam R.W., Khalid M.B., Ullah H., Aziz A., Abbas W. & Mirza A.I. 2020. Assessment of irrigated land transformations in Lahore. International Journal of Agriculture & Sustainable Development 2: 114–126.

Teke A.N., Kinge T.R., Bechem E.E.T., Ndam L.M. & Mih A.M. 2019. Mushroom species richness, distribution and substrate specificity in the Kilum-Ijim forest reserve of Cameroon. Journal of Applied Biosciences 133: 13592–13617. https://doi.org/10.4314/jab.v133i1.11

Tóth A., Hausknecht A., Krisai-Greilhuber I., Papp T., Vágvölgyi C. & Nagy L.G. 2013. Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family Bolbitiaceae. PLoS One 8: e56143. https://doi.org/10.1371/journal.pone.0056143

Undan R. 2016. Molecular identification and phylogeny of some wild microscopic fungi from selected areas of Jaen, Nueva Ecija, Philippines. Advances in Environmental Biology 10: 153–158.

Varga T., Krizsán K., Földi C., Dima B., Sánchez-García M., Sánchez-Ramírez S., Szöllösi G.J., Szarkándi J.G., Papp V., Albert L., et al. 2019. Megaphylogeny resolves global patterns of mushroom evolution. Nature Ecology & Evolution 3: 668–678. https://doi.org/10.1038/s41559-019-0834-1

Vellinga E.C. 2001. Agaricaceae. In: Noordeloos M.E., Kuyper T.W. & Vellinga E.C. (eds) Flora Agaricina Neerlandica 5. Rotterdam, Balkema Publishers.

Vilgalys R. & Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172: 4239–4246.

Voto P. & Angelina C. 2021. First record of Copelandia mexicana in Dominican Republic and notes on Panaeolus. Mycological Observations 1: 44–58.

Vu D., Groenewald M., De Vries M., Gehrmann T., Stielow B., Eberhardt U., Al-Hatmi A., Groenewald J.Z., Cardinali G., Houbraken J., et al. 2019. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. Studies in Mycology 91: 135–154. https://doi.org/10.1016/j.simyco.2018.05.001

Waheed M., Arshad F., Iqbal M., Fatima K. & Fatima K. 2020. Ethnobotanical assessment of woody flora of district Kasur (Punjab), Pakistan. Ethnobotany Research and Applications 20: 1–13. https://doi.org/10.32859/era.20.33.1-13

Walther G., Garnica S. & Weiẞ M. 2005. The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycological Research 109 (5): 525–544. https://doi.org/10.1017/S0953756205002868

Wang Y.W. & Tzean S.S. 2015. Dung-associated, potentially hallucinogenic mushrooms from Taiwan. Taiwania 60 (4): 160–168. https://doi.org/10.6165/tai.2015.60.160

Warnke S.E. 2020. PCR‐based detection of the epibiotic fungus Atkinsonella hypoxylon associated with its host grass Danthonia spicata. Crop Science 60: 1660–1665. https://doi.org/10.1002/csc2.20149

Wartchow F., Carvalho A.S. & Sousa M.C.A. 2010. First record of the psychotropic mushroom Copelandia cyanescens (Agaricales) from Pernambuco State, Northeast Brazil. Brazilian Journal of Bioscience 8: 59–60.

Watling R. & Gregory N.M. 1987. British Fungus Flora. Agarics and Boleti. 5. Strophariaceae & Coprinaceae p.p. Hypholoma, Melanotus, Psilocybe, Stropharia, Lacrymaria & Panaeolus: 76–93.

Weeks R.A., Singer R. & Hearns W.L. 1979. A new species of Copelandia. Lloydia 42: 469–474.

White T.J., Bruns T., Lee S. & Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a Guide to Methods and Applications: 315–322. Academic Press, San Diego. https://doi.org/10.1016/B978-0-12-372180-8.50042-1

Yu W.J., Chang C., Qin L.W., Zeng N.K., Wang S.X. & Fan Y.G. 2020. Pseudosperma citrinostipes (Inocybaceae), is a new species associated with Keteleeria from southwestern China. Phytotaxa 450: 8–16. https://doi.org/10.11646/phytotaxa.450.1.2

Zabihullah Q., Rashid A. & Akhtar N. 2006. Ethnobotanical survey in kot Manzaray Baba valley Malakand agency, Pakistan. Pakistan Journal of Plant Sciences 12: 115–121.

Zeller S.M. 1943. North American species of Galeropsis, Gyrophragmium, Longia, and Montagnea. Mycologia 35: 409–421.

Zhang L.F., Yang J.B., Yang Z.L., Zhang L.F. & Yang J.B.A. 2004. Molecular phylogeny of eastern Asian species of Amanita (Agaricales, Basidiomycota): taxonomic and biogeographic implications. Fungal Diversity 17: 219–238.

Zhang X., Yu H., Wang Z., Yang Q., Xia R., Qu Y., Tao R., Shi Y., Xiang P., Zhang S. & Li C. 2022. Multi-locus identification of Psilocybe cubensis by high-resolution melting (HRM). Forensic Sciences Research 7: 490–497. https://doi.org/10.1080/20961790.2021.1875580

Zhao R., Karunarathna S., Raspé O., Parra L.A., Guinberteau J., Moinard M., De Kesel A., Barroso G., Courtecuisse R., Hyde K.D., et al. 2011. Major clades in tropical Agaricus. Fungal Diversity 51: 279–296. https://doi.org/10.1007/s13225-011-0136-7

Zhao R.-L., Zhou J.-L., Chen J., Margaritescu S., Sánchez-Ramírez S., Hyde K.D., Callac P., Parra L.A., Lie G.-J. & Moncalvo J.M. 2016. Towards standardizing taxonomic ranks using divergence times – a case study for reconstruction of the Agaricus taxonomic system. Fungal Diversity 78: 239–292. https://doi.org/10.1007/s13225-016-0357-x

Published
2023-08-10
How to Cite
Asif, M., Firdous, Q., Izhar, A., Niazi, A. R., Sarwar, S., & Khalid, A. N. (2023). Molecular and morphological studies reveal a new species of Panaeolus (Agaricales, Basidiomycota) from Punjab, Pakistan. European Journal of Taxonomy, 888(1), 77-96. https://doi.org/10.5852/ejt.2023.888.2215
Section
Research article