Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae)

  • Bernhard A. Huber Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany https://orcid.org/0000-0002-7566-5424
  • Guanliang Meng Zoological Research Museum Alexander Koenig, LIB, Bonn, Germany
  • Jiří Král Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
  • Ivalú M. Ávila Herrera Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
  • Matías A. Izquierdo Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Córdoba, Argentina
Keywords: Argentina, chromosome, CO1 barcode, sexual dimorphism, taxonomy

Abstract

The southern South American genus Guaranita includes tiny spiders (body length ~1 mm) that lead reclusive lives under ground-objects and run rapidly when disturbed. As a result, they have been poorly collected and studied. Here we report on a recent collection of Guaranita spiders from Argentina, describing one new species (G. auadae Huber sp. nov.) and the previously unknown female of G. dobby Torres et al., 2016. In addition, we provide CO1 barcodes for all (now five) known species, first SEM data, and first chromosome data for the genus. The diploid number of Guaranita goloboffi Huber, 2000 (2n♂ = 11) is among the lowest in araneomorph spiders with monocentric chromosome structure.

References

Astrin J.J. & Stüben P.E. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22: 503–522. https://doi.org/10.1071/IS07057

Astrin J.J., Höfer H., Spelda J., Holstein J., Bayer S., Hendrich L., Huber B.A., Kielhorn K.-H., Krammer H.-J., Lemke M., Monje J.C., Morinière J., Rulik B., Petersen M., Janssen H. & Muster C. 2016. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One 11 (9): e0162624. https://doi.org/10.1371/journal.pone.0162624

Avalos G., Rubio G.D., Bar M.E. & Damborsky M.P. 2006. Lista preliminar de la araneofauna (Arachnida: Araneae) del Centro-Norte de la Provincia de Corrientes, Argentina. Revista Ibérica deAracnología 13: 189–194.

Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., Haddad C.R., Hiřman M., Koubová M., Sadílek D. & Huber B.A. 2021. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecology and Evolution 21: 75. https://doi.org/10.1186/s12862-021-01750-8

Benavente R. & Wettstein R. 1980. Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma 77: 69–81. https://doi.org/10.1007/BF00292042

Brown B.V. 1993. A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times 11: 10.

Cock P.J., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B. & de Hoon M.J. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. https://doi.org/10.1093/bioinformatics/btp163

Dederichs T.M., Huber B.A. & Michalik P. 2022. Evolutionary morphology of sperm in pholcid spiders (Pholcidae, Synspermiata). BMC Zoology 7: 52. https://doi.org/10.1186/s40850-022-00148-3

Eberle J., Dimitrov D., Valdez-Mondragón A. & Huber B.A. 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: 141. https://doi.org/10.1186/s12862-018-1244-8

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678

Forman M., Nguyen P., Hula P. & Král J. 2013. Sex chromosome pairing and extensive NOR polymorphism in Wadicosa fidelis (Araneae: Lycosidae). Cytogenetic and Genome Research 141: 43–49. https://doi.org/10.1159/000351041

Gertsch W.J. 1982. The spider genera Pholcophora and Anopsicus (Araneae, Pholcidae) in North America, Central America and the West Indies. Association of Mexican Cave Studies, Bulletin 8: 95–144 / Texas Memorial Museum, Bulletin 28: 95–144.

Huber B.A. 2000. New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254: 1–348. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2

Huber B.A. 2005. High species diversity, male-female coevolution, and metaphyly in Southeast Asian pholcid spiders: the case of Belisana Thorell 1898 (Araneae, Pholcidae). Zoologica 155: 1–126.

Huber B.A. 2014. Pholcidae. In: Roig-Juñent S., Claps L.E. & Morrone J.J. (eds) Biodiversidad de Artrópodos Argentinos Vol. 3: 131–140. Sociedad Entomológica Argentina.

Huber B.A. 2021. Beyond size: sexual dimorphisms in pholcid spiders. Arachnology 18: 656–677. https://doi.org/10.13156/arac.2020.18.7.656

Huber B.A. & Brescovit A.D. 2003. Ibotyporanga Mello-Leitão: tropical spiders in Brazilian semi-arid habitats (Araneae: Pholcidae). Insect Systematics and Evolution 34: 15–20. https://doi.org/10.1163/187631203788964926

Huber B.A. & Carvalho L.S. 2019. Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa 4546: 1–96. https://doi.org/10.11646/zootaxa.4546.1.1

Huber B.A. & Eberle J. 2021. Mining a photo library: eggs and egg sacs in a major spider family. Invertebrate Biology 140: e12349. https://doi.org/10.1111/ivb.12349

Huber B.A. & Villarreal O. 2020. On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy 718: 1–317. https://doi.org/10.5852/ejt.2020.718.1101

Huber B.A., Eberle J. & Dimitrov D. 2018. The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789: 51–101. https://doi.org/10.3897/zookeys.789.22781

Huber B.A., Meng G., Král J., Ávila Herrera I.M., Izquierdo M.A. & Carvalho L.S. 2023a. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society 198 (2): 534–591. https://doi.org/10.1093/zoolinnean/zlac100

Huber B.A., Meng G., Váldez-Mondragon A., Král J., Ávila Herrera I.M. & Carvalho L.S. 2023b. Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae). European Journal of Taxonomy 880: 1–89. https://doi.org/10.5852/ejt.2023.880.2173

Junier T. & Zdobnov E.M. 2010. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics 26: 1669–1670. https://doi.org/10.1093/bioinformatics/btq243

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/bf01731581

Kořínková T. & Král J. 2013. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W. (ed.) Spider Ecophysiology: 159–172. Springer, Berlin. https://doi.org/10.1007/978-3-642-33989-9_12

Král J. 2007. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Research 5 (7): 863–79. https://doi.org/10.1007/s10577-007-1169-3

Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A. & Ribera Almerje C. 2006. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. https://doi.org/10.1007/s10577-006-1095-9

Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G. & Hedin M. 2013. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109: 377–408. https://doi.org/10.1111/bij.12056

Letunic I. & Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. https://doi.org/10.1093/nar/gkab301

Levan A.K., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

Lomazi R.L., Araujo D., Carvalho L.S. & Schneider M.C. 2018. Small pholcids (Araneae: Synspermiata) with big surprises: the lowest diploid number in spiders with monocentric chromosomes. Journal of Arachnology 46: 45–49. https://doi.org/10.1636/JoA-S-17-033R2.1

Miller J.A. 2007. Review of erigonine spider genera in the Neotropics (Araneae: Linyphiidae, Erigoninae). Zoological Journal of the Linnean Society 149 (Suppl. 1): 1–263. https://doi.org/10.1111/j.1096-3642.2007.00233.x

Parida B.B. & Sharma N.N. 1987. Chromosome number, sex mechanism and genome size in 27 species of Indian spiders. Chromosome Information Service 43: 11–13.

Ratnasingham S. & Hebert P.D.N. 2007. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111%2Fj.1471-8286.2007.01678.x

Sember A., Pappová M., Forman M., Nguyen P., Marec F., Dalíková M., Divišová K., Doležálková-Kaštánková M., Zrzavá M., Sadílek D., Hrubá B. & Král J. 2020. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes (Basel) 11 (8): 849. https://doi.org/10.3390/genes11080849

Srivathsan A., Lee L., Katoh K., Hartop E., Kutty S.N., Wong J., Yeo D. & Meier R. 2021. ONTbarcoder and MinION barcodes aid biodiversity discovery and identification by everyone, for everyone. BMC Biology 19: 217. https://doi.org/10.1186/s12915-021-01141-x

Suyama M., Torrents D. & Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609–W612. https://doi.org/10.1093/nar/gkl315

Suzuki S. 1954. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. Journal of Science of Hiroshima University 2: 23–136.

Tamura K., Stecher G. & Kumar S. 2021. MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38: 3022–3027. https://doi.org/10.1093/molbev/msab120

Torres V.M., Pardo P.L., González-Reyes A.X., Rodriguez-Artigas S.M. & Corronca J.A. 2015. New records of seven species of pholcid spiders (Araneae, Pholcidae) from the northern Argentina. Check List 11 (3): 1–9. https://doi.org/10.15560/11.3.1629

Torres V.M., Pardo P.L., González-Reyes A.X., Rodriguez Artigas S.M. & Corronca J.A. 2016. Contributions on the spider families Nesticidae and Pholcidae (Araneae) from Argentina. Turkish Journal of Zoology 40: 6–13. https://doi.org/10.3906/zoo-1504-38

Truett G., Heeger P., Mynatt R., Truett A., Walker J. & Warman M.J.B. 2018. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29: 52–54. https://doi.org/10.2144/00291bm09

Yang C., Zheng Y., Tan S., Meng G., et al. 2020. Efficient COI barcoding using high throughput single-end 400bp sequencing. BMC Genomics 21: 862. https://doi.org/10.1186/s12864-020-07255-w

Published
2023-10-20
How to Cite
Huber, B. A., Meng, G., Král, J., Ávila Herrera, I. M., & Izquierdo, M. A. (2023). Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae). European Journal of Taxonomy, 900(1), 32–80. https://doi.org/10.5852/ejt.2023.900.2301
Section
Research article