New details of the enigmatic 100 million years old antlion-like larvae of Ankyloleon (Myrmeleontiformia, Neuroptera)
Abstract
Lacewing larvae in the Cretaceous were more diverse in appearance than they are today, best documented by numerous fossils preserved in amber. One morphotype of an unusual larva from about 100 Ma old Kachin amber (Myanmar) was formally recognised as a distinct group called Ankyloleon. The original description erected a single formal species, Ankyloleon caudatus. Yet, it was indicated that among the five original specimens, more species were represented. We here report five new specimens. Among these is the so far largest as well as the so far smallest specimen. Based on this expanded material we can estimate certain aspects of the ontogenetic sequence and are able to recognise a second discrete species, Ankyloleon caroluspetrus sp. nov. We discuss aspects of the biology of Ankyloleon based on newly observed details such as serrations on the mandibles. Long and slender mouthparts, legs and body together with a weakly expressed outer trunk segmentation provide indications for a lifestyle hunting for prey in more confined spaces. Still many aspects of the biology of these larvae must remain unclear due to a lack of a well comparable modern counterpart, emphasising how different the fauna of the Cretaceous was.
References
Aspöck U. & Aspöck H. 2007. Verbliebene Vielfalt vergangener Blüte. Zur Evolution, Phylogenie und Biodiversität der Neuropterida (Insecta: Endopterygota). Denisia 20, Kataloge der Oberöstereichischen Landesmuseen Neue Serie 66: 451–516.
Badano D., Engel M.S., Basso A., Wang B. & Cerretti P. 2018. Diverse Cretaceous larvae reveal the evolutionary and behavioural history of antlions and lacewings. Nature Communications 9: 3257. https://doi.org/10.1038/s41467-018-05484-y
Badano D., Fratini M., Maugeri L., Palermo F., Pieroni N., Cedola A., Haug J.T., Weiterschan T., Velten J., Mei M., Di Giulio A. & Cerretti P. .2021. X-ray microtomography and phylogenomics provide insights into the morphology and evolution of an enigmatic Mesozoic insect larva. Systematic Entomology 46: 672–684. https://doi.org/10.1111/syen.12482
Beutel R.G., Friedrich F. & Aspöck U. 2010. The larval head of Nevrorthidae and the phylogeny of Neuroptera (Insecta). Zoological Journal of the Linnean Society 158 (3): 533–562. https://doi.org/10.1111/j.1096-3642.2009.00560.x
Cover M.R. & Bogan M.T. 2015. Chapter 41: Minor insect orders. In: Thorp J. & Rogers D.C. (eds) Thorp and Covich’s Freshwater Invertebrates (Fourth Edition): 1059–1072. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-385026-3.00041-3
Cruickshank R.D. & Ko K. 2003. Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences 21: 441–455. https://doi.org/10.1016/S1367-9120(02)00044-5
Engel M.S. & Grimaldi D.A. .2008. Diverse Neuropterida in Cretaceous amber, with particular reference to the paleofauna of Myanmar (Insecta). Nova Supplementa Entomologica 20: 1–86.
Engel M.S., Winterton S.L. & Breitkreuz L.C. 2018. Phylogeny and evolution of Neuropterida: where have wings of lace taken us? Annual Review of Entomology 63: 531–551. https://doi.org/10.1146/annurev-ento-020117-043127
Gauweiler J., Haug C., Müller P. & Haug J.T. 2022. Lepidopteran caterpillars in the Cretaceous: were they a good food source for early birds? Palaeodiversity 15: 45–59. https://doi.org/10.18476/pale.v15.a3
Haug C., Herrera Flórez A.F., Müller P. & Haug J.T. 2019c. Cretaceous chimera – an unusual 100-million-year old neuropteran larva from the “experimental phase” of insect evolution. Palaeodiversity 12: 1–11. https://doi.org/10.18476/pale.v12.a1
Haug C., Zippel A., Hassenbach C., Haug G.T. & Haug J.T. 2022b. A split-footed lacewing larva from about 100-million-year-old amber indicates a now extinct hunting strategy for neuropterans. Bulletin of Geosciences 97 (4): 453–464. https://doi.org/10.3140/bull.geosci.1861
Haug C., Posada Zuluaga V., Zippel A., Braig F., Müller P., Gröhn C., Weiterschan T., Wunderlich J., Haug G.T. & Haug J.T. 2022c. The morphological diversity of antlion larvae and their closest relatives over 100 million years. Insects 13: 587. https://doi.org/10.3390/insects13070587
Haug C., Haug G.T., Kiesmüller C. & Haug J.T. 2023. Convergent evolution and convergent loss in the grasping structures of immature earwigs and aphidlion-like larvae as demonstrated by about 100-million-year-old fossils. Swiss Journal of Paleontology 142: 21. https://doi.org/10.1186/s13358-023-00286-2
Haug G.T., Haug C., Pazinato P.G., Braig F., Perrichot V., Gröhn C., Müller P. & Haug J.T. 2020a. The decline of silky lacewings and morphological diversity of long-nosed antlion larvae through time. Palaeontologia Electronica 23 (2): a39. https://doi.org/10.26879/1029
Haug G.T., Haug C. & Haug J.T. 2021b. The morphological diversity of spoon-winged lacewing larvae and the first possible fossils from 99 million-year-old Kachin amber, Myanmar. Palaeodiversity 14: 133–152. https://doi.org/10.18476/pale.v14.a6
Haug G.T., Baranov V., Wizen G., Pazinato P.G., Müller P., Haug C. & Haug J.T. 2021c. The morphological diversity of long-necked lacewing larvae (Neuroptera: Myrmeleontiformia). Bulletin of Geosciences 96: 431–457. https://doi.org/10.3140/bull.geosci.1807
Haug G.T., Haug C., van der Wal S., Müller P. & Haug J.T. 2022a. Split-footed lacewings declined over time: indications from the morphological diversity of their antlion-like larvae. PalZ 96: 29–50. https://doi.org/10.1007/s12542-021-00550-1
Haug J.T. & Haug C. 2022. 100 million-year-old straight-jawed lacewing larvae with enormously inflated trunks represent the oldest cases of extreme physogastry in insects. Scientific Reports 12: 12760. https://doi.org/10.1038/s41598-022-16698-y
Haug J.T., Müller P. & Haug C. 2018. The ride of the parasite: a 100-million-year old mantis lacewing larva captured while mounting its spider host. Zoological Letters 4 (1): 31. https://doi.org/10.1186/s40851-018-0116-9
Haug J.T., Müller P. & Haug C. 2019a. A 100-million-year old predator: a fossil neuropteran larva with unusually elongated mouthparts. Zoological Letters 5: 29. https://doi.org/10.1186/s40851-019-0144-0
Haug J.T., Müller P. & Haug C. 2019b. A 100-million-year old slim insectan predator with massive venom-injecting stylets – a new type of neuropteran larva from Burmese amber. Bulletin of Geosciences 94: 431–440. https://doi.org/10.3140/bull.geosci.1753
Haug J.T., Baranov V., Schädel M., Müller P., Gröhn C. & Haug C. 2020b. Challenges for understanding lacewings: how to deal with the incomplete data from extant and fossil larvae of Nevrorthidae? (Neuroptera). Fragmenta entomologica 52: 137–167. https://doi.org/10.4081/fe.2020.472
Haug J.T., Baranov V., Müller P. & Haug C. 2021a. New extreme morphologies as exemplified by 100 million-year-old lacewing larvae. Scientific Reports 11: 20432. https://doi.org/10.1038/s41598-021-99480-w
Herrera-Flórez A.F., Braig F., Haug C., Neumann C., Wunderlich J., Hörnig M.K. & Haug J.T. 2020. Identifying the oldest larva of a myrmeleontiformian lacewing – a morphometric approach. Acta Palaeontologica Polonica 65: 235–250. https://doi.org/10.4202/app.00662.2019
Hörnig M.K., Haug C., Müller P. & Haug J.T. 2022. Not quite social – possible cases of gregarious behaviour of immatures of various lineages of Insecta preserved in 100-million-year-old amber. Bulletin of Geosciences 97: 69–87. https://doi.org/10.3140/bull.geosci.1818
Jandausch K., Pohl H., Aspöck U., Winterton S.L. & Beutel R.G. 2018. Morphology of the primary larva of Mantispa aphavexelte Aspöck & Aspöck, 1994 (Neuroptera: Mantispidae) and phylogenetic implications to the order of Neuroptera. Arthropod Systematics & Phylogeny 76 (3): 529–560. https://doi.org/10.3897/asp.76.e31967
Labandeira C.C., Yang Q., Santiago-Blay J.A., Hotton C.L., Monteiro A., Wang Y.-j., Goreva Y., Shih C.-K., Siljeström S., Rose T.R., Dilcher D.L. & Ren D. 2016. The evolutionary convergence of mid-Mesozoic lacewings and Cenozoic butterflies. Proceedings of the Royal Society of London B 283: 20152893. https://doi.org/10.1098/rspb.2015.2893
Lehnert M.S., Lanba A., Reiter K.E., Fonseca R.J., Minninger J., Hall B. & Huff W. 2022. Mouthpart adaptations of antlion larvae facilitate prey handling and fluid feeding in sandy habitats. Journal of Experimental Biology 225 (19): jeb244220. https://doi.org/10.1242/jeb.244220
Liu X., Zhang W., Winterton S.L., Breitkreuz L.C. & Engel M.S. 2016. Early morphological specialization for insect-spider associations in Mesozoic lacewings. Current Biology 26: 1590–1594. https://doi.org/10.1016/j.cub.2016.04.039
Liu X., Shi G., Xia F., Lu X., Wang B. & Engel M.S. 2018. Liverwort mimesis in a Cretaceous lacewing larva. Current Biology 28: 1475–1481. https://doi.org/10.1016/j.cub.2018.03.060
Luo C., Liu H. & Jarzembowski E.A. 2022. High morphological disparity of neuropteran larvae during the Cretaceous revealed by a new large species. Geological Magazine 159: 954–962. https://doi.org/10.1017/S0016756822000176
MacLeod E.G. 1964. A Comparative Morphological Study of the Head Capsule and Cervix of Larval Neuroptera (Insecta). Ph.D. Thesis, Harvard University, Cambridge, MA, USA.
Makarkin V.N. 2018. Re-description of Grammapsychops lebedevi Martynova, 1954 (Neuroptera: Psychopsidae) with notes on the Late Cretaceous psychopsoids. Zootaxa 4524: 581–594. https://doi.org/10.11646/zootaxa.4524.5.5
New T.R. 1982. The larva of Nymphes Leach (Neuroptera: Nymphidae). Neuroptera International 2 (2): 79–84.
New T.R. 1992. The lacewings (Insecta, Neuroptera) of Tasmania. Papers and Proceedings of the Royal Society of Tasmania 126: 29–45. https://doi.org/10.26749/rstpp.126.29
Pérez-de la Fuente R., Delclòs X., Peñalver E., Speranza M., Wierzchos J., Ascaso C. & Engel M.S. 2012. Early evolution and ecology of camouflage in insects. Proceedings of the National Academy of Sciences 109 (52): 21414–21419. https://doi.org/10.1073/pnas.1213775110
Pérez-de la Fuente R., Delclòs X., Peñalver E. & Engel M.S. 2016. A defensive behavior and plant-insect interaction in Early Cretaceous amber – the case of the immature lacewing Hallucinochrysa diogenesi. Arthropod Structure & Development 45 (2): 133–139. https://doi.org/10.1016/j.asd.2015.08.002
Pérez-de la Fuente R., Peñalver E., Azar D. & Engel M.S. 2018. A soil-carrying lacewing larva in Early Cretaceous Lebanese amber. Scientific Reports 8: 16663. https://doi.org/10.1038/s41598-018-34870-1
Pérez-de la Fuente R., Engel M.S., Azar D. & Peñalver E. 2019. The hatching mechanism of 130-million-year-old insects: an association of neonates, egg shells and egg bursters in Lebanese amber. Palaeontology 62: 547–559. https://doi.org/10.1111/pala.12414
Pérez-de la Fuente R., Engel M.S., Delclòs X. & Peñalver E. 2020. Straight-jawed lacewing larvae (Neuroptera) from Lower Cretaceous Spanish amber, with an account on the known amber diversity of neuropterid immatures. Cretaceous Research 106: 104200. https://doi.org/10.1016/j.cretres.2019.104200
Satar A., Suludere Z., Canbulat S. & Oezbay C. 2006. Rearing the larval stages of Distoleon tetragrammicus (Fabricius, 1798) (Neuroptera, Myrmeleontidae) from egg to adult, with notes on their behaviour. Zootaxa 1371 (1): 57–64. https://doi.org/10.11646/zootaxa.1371.1.5
Satar A., Tusun S. & Bozdogan H. 2014. Third instars larvae of Gepus gibbosus Holzel, 1968 (Neuroptera: Myrmeleontindae). Zootaxa 3793: 281–285. https://doi.org/10.11646/zootaxa.3793.2.8
Shi G., Grimaldi D.A., Harlow G.E., Wang J., Wang J., Yang M., Lei W., Li Q. & Li X. 2012. Age constraint on Burmese amber based on U–Pb dating of zircons. Cretaceous Research 37: 155–163. https://doi.org/10.1016/j.cretres.2012.03.014
Tauber C.A. 2003. Generic characteristics of Chrysopodes (Neuroptera: Chrysopidae), with new larval descriptions and a review of species from the United States and Canada. Annals of the Entomological Society of America 96 (4): 472–490. https://doi.org/10.1603/0013-8746(2003)096[0472:GCOCNC]2.0.CO;2
Tusun S. & Satar A. 2016. Morphology, surface structure and sensory receptors of larvae of Dielocroce ephemera (Gerstaecker, 1894) (Neuroptera: Nemopteridae). Entomological News 126 (2): 144–149. https://doi.org/10.3157/021.126.0211
Wang B., Xia F., Engel M.S., Perrichot V., Shi G., Zhang H., Chen J., Jarzembowski E.A., Wappler T. & Rust J. 2016. Debris-carrying camouflage among diverse lineages of Cretaceous insects. Science Advances 2: e1501918. https://doi.org/10.1126/sciadv.1501918
Wichard W. 2017. Family Nevrorthidae (Insecta, Neuroptera) in mid-Cretaceous Burmese amber. Palaeodiversity 10 (1): 1–6. https://doi.org/10.18476/pale.v10.a1
Winterton S.L., Hardy N.B. & Wiegmann B.M. 2010. On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Systematic Entomology 35 (3): 349–378. https://doi.org/10.1111/j.1365-3113.2010.00521.x
Winterton S.L., Lemmon A.R., Gillung J.P., Garzon I.J., Badano D., Bakkes D.K., Breitkreuz L.C.V., Engel M., Moriarty E.M., Liu X., Machado R.J.P., Skevington J.H. & Oswald J.D. 2018. Evolution of lacewings and allied orders using anchored phylogenomics (Neuroptera, Megaloptera, Raphidioptera). Systematic Entomology 43: 330–354. https://doi.org/10.1111/syen.12278
Yu T., Kelly R., Mu L., Ross A., Kennedy J., Broly P., Xia F., Zhang H., Wang B. & Dilcher D. 2019. An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences 116: 11345–11350. https://doi.org/10.1073/pnas.1821292116
Zimmermann D., Randolf S. & Aspöck U. 2019. From chewing to sucking via phylogeny – from sucking to chewing via ontogeny: mouthparts of Neuroptera. In: Krenn H.W. (ed.) Insect Mouthparts, Zoological Monographs 5: 361–385. Springer, Berlin, Germany. https://doi.org/10.1007/978-3-030-29654-4_11
Zippel A., Kiesmüller C., Haug G.T., Müller P., Weiterschan T., Haug C., Hörnig M.K. & Haug J.T. 2021. Long-headed predators in Cretaceous amber — fossil findings of an unusual type of lacewing larva. Palaeoentomology 4: 475–498. https://doi.org/10.11646/palaeoentomology.4.5.14
Copyright (c) 2023 Joachim T. Haug, Carolin Haug
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.