Andean giants: Priscula spiders from Ecuador, with notes on species groups and egg-sac troglomorphism (Araneae: Pholcidae)

Keywords: CO1 barcode, cave-dwelling, taxonomy, egg size, egg number, Venezuela

Abstract

The Andean genus Priscula Simon, 1893 includes the largest Neotropical pholcid spiders, but due to their mostly cryptic lifestyle they remain poorly collected and poorly studied. Many species available in collections remain undescribed and nothing has been published about the phylogeny and the biology of the genus. Here, we deal with a recent collection of Priscula spiders from Ecuador, the country of origin of the type species, P. gularis Simon, 1893. We describe eight new species, collected at 17 localities at altitudes from 640–3160 m, all based on males and females: P. azuay sp. nov., P. llaviucu sp. nov., P. espejoi sp. nov., P. esmeraldas sp. nov., P. chapintza sp. nov., P. pastaza sp. nov., P. bonita sp. nov., and P. lumbaqui  sp. nov. We use a sample of approximately 26 species-level taxa, mostly from Ecuador and Venezuela, to propose a first hypothesis about relationships within the genus. Our data (mainly CO1) suggest the existence of five species groups, three of which are represented in Ecuador. The cave-dwelling P. pastaza sp. nov. is only slightly troglomorphic (paler than usual; anterior median eyes strongly reduced or lost) but differs dramatically from forest-dwelling congeners in its biology: it hangs fully exposed in its web during the day; it produces egg sacs with only 6–7 eggs (average in 15 other species: 42 eggs); and it produces the largest eggs relative to body size of all studied species.

References

Astrin J.J. & Stüben P.E. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22 (5): 503–522. https://doi.org/10.1071/IS07057

Astrin J.J., Huber B.A., Misof B. & Kluetsch C.F.C. 2006. Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluations of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35: 441–457. https://doi.org/10.1111/j.1463-6409.2006.00239.x

Astrin J.J., Höfer H., Spelda J., Holstein J., Bayer S., Hendrich L., Huber B.A., Kielhorn K.-H., Krammer H.-J., Lemke M., Monje J.C., Morinière J., Rulik B., Petersen M., Janssen H. & Muster C. 2016. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One 11 (9): e0162624. https://doi.org/10.1371/journal.pone.0162624

Brignoli P.M. 1981. Studies on the Pholcidae, I. Notes on the genera Artema and Physocyclus (Araneae). Bulletin of the American Museum of Natural History 170: 90–100.

Bruvo-Mađarić B., Huber B.A., Steinacher A. & Pass G. 2005. Phylogeny of pholcid spiders (Araneae: Pholcidae): combined analysis using morphology and molecules. Molecular Phylogenetics and Evolution 37 (3): 661–673. https://doi.org/10.1016/j.ympev.2005.08.016

Capella-Gutiérrez S., Silla-Martínez J.M. & Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15): 1972–1973.

https://doi.org/10.1093/bioinformatics/btp348

Cock P.J.A., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B. & de Hoon M.J. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25 (11): 1422–1423. https://doi.org/10.1093/bioinformatics/btp163

Dederichs T.M., Huber B.A. & Michalik P. 2022. Evolutionary morphology of sperm in pholcid spiders (Pholcidae, Synspermiata). BMC Zoology 7: 52. https://doi.org/10.1186/s40850-022-00148-3

Eberle J., Dimitrov D., Valdez-Mondragón A. & Huber B.A. 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: 141. https://doi.org/10.1186/s12862-018-1244-8

González-Sponga M.A. 1999. Arácnidos de Venezuela. Ocho especies nuevas del género Priscula y descripción de Priscula venezuelana Simon, 1893 (Arachnida: Araneae: Pholcidae). Boletín de la Academia de Ciencias Fisicas, Matematicas y Naturales 54: 123–168.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Huber B.A. 1997. Redescriptions of Eugène Simon’s neotropical pholcids (Araneae, Pholcidae). Zoosystema 19 (3): 573–612.

Huber B.A. 2000. New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254: 1–348. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2

Huber B.A. 2014. Pholcidae. In: Roig-Juñent S., Claps L.E. & Morrone J.J. (eds) Biodiversidad de Artrópodos Argentinos, Vol. 3: 131–140. Sociedad Entomológica Argentina.

Huber B.A. 2021. First Northwest African species of the spider genus Artema, from caves in Morocco, with notes on body size in pholcid spiders (Araneae, Pholcidae). Zootaxa 4984: 324–334. https://doi.org/10.11646/zootaxa.4984.1.23

Huber B.A. 2022. Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae). European Journal of Taxonomy 795: 1–241. https://doi.org/10.5852/ejt.2022.795.1663

Huber B.A. & Eberle J. 2021. Mining a photo library: Eggs and egg sacs in a major spider family. Invertebrate Biology 140 (4): e12349, 1–13. https://doi.org/10.1111/ivb.12349

Huber B.A. & Meng G. 2023. On the mysterious Seychellois endemic spider genus Cenemus (Araneae, Pholcidae). Arthropod Systematics and Phylogeny 81: 179–200. https://doi.org/10.3897/asp.81.e86793

Huber B.A. & Villarreal O. 2020. On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy 718: 1–317. https://doi.org/10.5852/ejt.2020.718.1101

Huber B.A., Meng G., Acurio A.E., Astrin J.J., Inclán D.J., Izquierdo M. & Valdez-Mondragón A. 2022. Metagonia spiders of Galápagos: blind cave-dwellers and their epigean relatives (Araneae, Pholcidae). Invertebrate Systematics 36 (7): 647–678. https://doi.org/10.1071/IS21082

Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30 (4): 772–780. https://doi.org/10.1093/molbev/mst010

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28 (12): 1647–1649. https://doi.org/10.1093/bioinformatics/bts199

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581

Letunic I. & Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49 (W1): W293–W296. https://doi.org/10.1093/nar/gkab301

Minh B.Q., Nguyen M.A.T. & von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30 (5): 1188–1195. https://doi.org/10.1093/molbev/mst024

Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A. & Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37 (5): 1530–1534. https://doi.org/10.1093/molbev/msaa015

Ratnasingham S. & Hebert P.D.N. 2007. BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x

Simon E. 1893a. Descriptions d’espèces et de genres nouveaux de l'ordre des Araneae. Annales de la Société Entomologique de France 62: 299–330.

Simon E. 1893b. Histoire Naturelle des Araignées. 2nd edition, 1 (2): 256–488. Roret, Paris.

Steenwyk J.L., Buida III T.J., Li Y., Shen X.-X. & Rokas A. 2020. ClipKIT: A multiple sequence alignment trimming software for accurate phylogenomic inference. PLoS Biology 18: e3001007. https://doi.org/10.1371/journal.pbio.3001007

Suyama M., Torrents D. & Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609–W612. https://doi.org/10.1093/nar/gkl315

Tabei Y., Kiryu H., Kin T. & Asai K. 2008. A fast structural multiple alignment method for long RNA sequences. BMC Bioinformatics 9: 33. https://doi.org/10.1186/1471-2105-9-33

Talavera G. & Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology 56 (4): 564–577. https://doi.org/10.1080/10635150701472164

Tamura K., Stecher G. & Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38 (7): 3022–3027. https://doi.org/10.1093/molbev/msab120

Torres-Carvajal O., Pazmiño-Otamendi G. & Salazar-Valenzuela D. 2019. Reptiles of Ecuador: a resource-rich online portal, with dynamic checklists and photographic guides. Amphibian and Reptile Conservation 13 (1): 209–229.

Yang C., Zheng Y., Tan S., Meng G., Rao W., Yang C., Bourne D.G., O’Brien P.A., Xu J., Liao S., Chen A., Chen X., Jia X., Zhang A. & Liu S. 2020. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21: 862. https://doi.org/10.1186/s12864-020-07255-w

Published
2023-11-28
How to Cite
Huber, B. A., Meng, G. ., Dupérré, N. ., Astrin, J., & Herrera, M. (2023). Andean giants: Priscula spiders from Ecuador, with notes on species groups and egg-sac troglomorphism (Araneae: Pholcidae). European Journal of Taxonomy, 909(1), 1-63. https://doi.org/10.5852/ejt.2023.909.2351
Section
Monograph