The beginning of a success story: basalmost members of the extant ophiuroid clade from the Silurian of Gotland, Sweden

  • Ben Thuy Natural History Museum Luxembourg, Department of Palaeontology, 25, rue Münster, 2160 Luxembourg-city, Luxembourg https://orcid.org/0000-0001-8231-9565
  • Mats E. Eriksson Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
  • Manfred Kutscher Dorfstrasse 10, 18546 Sassnitz, Germany
  • Lea D. Numberger-Thuy Natural History Museum Luxembourg, Department of Palaeontology, 25, rue Münster, 2160 Luxembourg-city, Luxembourg
Keywords: phylogeny, new species, Gotland, Ankhurida, Ophiovalida

Abstract

Due to the fragility of the ophiuroid (brittle star) skeleton, the bulk of the group’s fossil record consists of dissociated ossicles preserved as microfossils. In spite of their great potential as basis for taxonomic and phylogenetic studies, however, ophiuroid ossicles from the Paleozoic have received very little attention so far. Here, we provide an exhaustive taxonomic assessment of such fossils retrieved from sieving residues from the Silurian of Gotland, Sweden. This material was used in a previous study to describe two key taxa that allowed constraining the origin of the extant ophiuroid clade. The remaining taxa belonging to that same lineage are described in the present paper. The evidence at hand suggests that the stem of the extant ophiuroid clade was formed by two genera, Ophiopetagno and Ophiolofsson gen. nov., including six and five species, respectively, and spanning at least the upper Llandovery through upper Ludlow. We conclude that Ophiopetagno and Ophiolofsson represent sister genera that coexisted through most of the Silurian in the shallow tropical seas of Gotland. They underwent repeated body size reductions in correlation with environmental perturbations, with Ophiopetagno paicei eventually giving rise to Muldaster haakei; the first member of the living Ophiuroidea. Herein, we also introduce two new clades, Ankhurida clade nov. and Ophiovalida clade nov., and the following eight new species: Ophiolofsson joelmciveri gen. et sp. nov., O. obituary gen. et sp. nov., O. immolation gen. et sp. nov., O. archspire gen. et sp. nov., O. hendersonorum gen. et sp. nov., Ophiopetagno bonzo sp. nov., O. kansas sp. nov., O. doro sp. nov.; and two probably new species in open nomenclature: Ophiopetagno sp. 1, and Ophiopetagno sp. 2.

References

Baarli B.G., Johnson M.E. & Antoshkina A.I. 2003. Silurian stratigraphy and paleogeography of Baltica. In: Landing E. & Johnson M.E. (eds) Silurian Lands and Seas — Paleogeography Outside Laurentia: 3–34. New York State Museum Bulletin 493.

Bassett M.G. & Cocks L.R.M. 1974. A review of Silurian brachiopods from Gotland. Fossils and Strata 3: 1–56. https://doi.org/10.18261/8200093492-1974-01

Bergman C.F. 1989. Silurian paulinitid polychaetes from Gotland. Fossils and Strata 25: 1–128. https://doi.org/10.18261/8200374246-1989-01

Boczarowski A. 2001. Isolated sclerites of Devonian non-pelmatozoan echinoderms. Palaeontologia Polonica 59: 1–219.

Bribiesca-Contreras G., Verbruggen H., Hugall A.F. & O’Hara T.D. 2017. The importance of offshore origination revealed through ophiuroid phylogenomics. Proceedings of the Royal Society B 284: 20170160. https://doi.org/10.1098/rspb.2017.0160

Bruguière J.G. 1791. Histoire naturelle des Vers. Échinodermes. Encyclopédie Méthodique Tome 1. Panckucke, Paris. https://doi.org/10.5962/bhl.title.49857

Calner M. 2008. Silurian global events – at the tipping point of climate change. In: Elewa A.M.T. (ed.) Mass Extinctions: 21–58. Springer-Verlag, Berlin and Heidelberg. https://doi.org/10.1007/978-3-540-75916-4_4

Cramer B.D., Brett C.E., Melchin M.J., Männik P., Kleffner M.A., McLaughlin P.I., Loydell D.K., Munnecke A., Jeppsson L., Corradini C., Brunton F.R. & Saltzman M.R. 2011. Revised correlation of Silurian Provincial Series of North America with global and regional chronostratigraphic units and δ13Ccarb chemostratigraphy. Lethaia 44: 185–202. https://doi.org/10.1111/j.1502-3931.2010.00234.x

Donovan S.K. 1991. The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment. In: Donovan S.K. (ed.) The Processes of Fossilization: 241–269. Belhaven Press, London.

Eriksson M.E. & Calner M. (eds). 2005. The Dynamic Silurian Earth – Subcommission on Silurian Stratigraphy Field Meeting 2005. Sveriges geologiska undersökning, Rapporter och Meddelanden 121.

Eriksson M.E., Nilsson E.K. & Jeppsson L. 2009. Vertebrate extinctions and reorganizations during the Late Silurian Lau Event. Geology 37: 739–742. https://doi.org/10.1130/G25709A.1

Fell H.B. 1960. Synoptic keys to the genera of Ophiuroidea. Zoological Publications of the Victoria University Wellington 24: 1–40.

Gladwell D.J. 2018. Asterozoans from the Ludlow Series (upper Silurian) of Leintwardine, Herefordshire, UK. Papers in Palaeontology 4: 101–160. https://doi.org/10.1002/spp2.1101

Gray J.E. 1840. Room II. In: Synopsis of the contents of the British Museum 42th Ed.: 57–65. British Museum, London. https://doi.org/10.5962/bhl.title.144636

Gregory J.W. 1897. On the classification of the Palaeozoic echinoderms of the group Ophiuroidea. Proceedings of the Zoological Society of London 1896: 1028–1044. https://doi.org/10.1111/j.1096-3642.1896.tb03098.x

Hede J.E. 1960. The Silurian of Gotland. In: Regnéll G. & Hede J.E. (eds) The Lower Palaeozoic of Scania. The Silurian of Gotland, International Geological Congress XXI, Session Norden, Guidebook Sweden d. Stockholm. Also as Publications of the Institutes of Mineralogy, Palaeontology and Quaternary Geology of the University of Lund 91.

Hotchkiss F.H.C. & Glass A. 2012. Observations on Onychaster Meek & Worthen, 1868 (Ophiuroidea: Onychasteridae) (Famennian – Visean age). Zoosymposia 7: 121–138. https://doi.org/10.11646/zoosymposia.7.1.12

Hotchkiss F.H.C. & Haude R. 2000. Observations on Aganaster gregarius and Stephanoura belgica (Ophiuroidea: Ophiolepididae) (Early Carboniferous and Late Devonian age). In: Heinzeller T. & Nebelsick J.H. (eds) Echinoderms München. Proceedings of the 11th International Echinoderm Conference, Munich, Germany, 6–10 October 2003: 425–431. Balkema, London.

Hotchkiss F.H.C., Prokop R.J. & Petr V. 2007. Isolated ossicles of the Family Eospondylidae SPENCER et WRIGHT, 1966, in the Lower Devonian of Bohemia (Czech Republic) and correction of the systematic position of eospondylid brittlestars (Echinodermata: Ophiuroidea: Oegophiurida). Acta Musei Nationalis Pragae, Series B – Historia Naturalis 63 (1): 3–18.

Jeppsson L. 1990. An oceanic model for lithological and faunal changes tested on the Silurian record. Journal of the Geological Society, London 147: 663–674. https://doi.org/10.1144/gsjgs.147.4.0663

Jeppsson L. 1998. Silurian oceanic events: summary of general characteristics. In: Landing E. & Johnson M.E. (eds) Silurian Cycles: Linkages of Dynamic Stratigraphy with Atmospheric, Oceanic, and Tectonic Changes. New York State Museum Bulletin 491: 239–257.

Jeppsson L. 2005. Conodont-based revisions of the Late Ludfordian on Gotland, Sweden. GFF 127: 273–282. https://doi.org/10.1080/11035890501274273

Jeppsson L., Aldridge R.J. & Dorning K.J. 1995. Wenlock (Silurian) oceanic episodes and events. Journal of the Geological Society, London 152: 487–498. https://doi.org/10.1144/gsjgs.152.3.0487

Jeppsson L., Eriksson M.E. & Calner M. 2006. A latest Llandovery to latest Ludlow high-resolution biostratigraphy based on the Silurian of Gotland – A summary. GFF 128: 109–114. https://doi.org/10.1080/11035890601282109

Jerre F. 1994. Anatomy and phylogenetic significance of Eoconularia loculata (Wiman, 1895), a conulariid from the Silurian of Gotland. Lethaia 27: 97–109. https://doi.org/10.1111/j.1502-3931.1994.tb01562.x

Johnson M.E. 2006. Relationship of Silurian sea-level fluctuations to oceanic episodes and events. GFF 128: 115–121. https://doi.org/10.1080/11035890601282115

Larsson K. 1979. Silurian tentaculitids from Gotland and Scania. Fossils and Strata 11: 1–180. https://doi.org/10.18261/8200094839-1979-01

Laufeld S. 1974. Reference localities for palaeontology and geology in the Silurian of Gotland. Sveriges Geologiska Undersökning C 705: 1–172. https://doi.org/10.18261/8200093581-1974-01

Matsumoto H. 1913. Evolutionary history of the class Ophiuroidea and a note on the new classification of the class. Zoological Magazine 25: 521–527. [In Japanese.]

Matsumoto H. 1929. Outline of the classification of the Echinodermata. Science Reports of the Tokyo Imperial University, 2nd Series (Geology) 13 (2): 27–33.

Melchin M.J., Sadler P.M. & Cramer B.D. 2020. Chapter 21 – The Silurian Period. In: Gradstein F.M., Ogg J.G., Schmitz M.D. & Ogg G.M. (eds) Geologic Time Scale 2020: 695–732. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-824360-2.00021-8

Munnecke A., Delabroye A., Servais T., Vandenbroucke T.R.A. & Vecoli M. 2012. Systematic occurrences of malformed (teratological) acritarchs in the run-up of Early Palaeozoic δ13C isotope excursions. Palaeogeography, Palaeoclimatology, Palaeoecology 367–368: 137–146. https://doi.org/10.1016/j.palaeo.2012.02.029

O’Hara T.D., Hugall A.F., Thuy B. & Moussalli A. 2014. Phylogenomic resolution of the class Ophiuroidea unlocks a global microfossil record. Current Biology 24: 1–6. https://doi.org/10.1016/j.cub.2014.06.060

O’Hara T.D., Hugall A.F., Thuy B., Stöhr S. & Martynov A.V. 2017. Restructuring higher taxonomy using broad-scale phylogenomics: the living Ophiuroidea. Molecular Phylogenetics and Evolution 107: 415–430. https://doi.org/10.1016/j.ympev.2016.12.006

O’Hara T.D., Stöhr S., Hugall A.F., Thuy B. & Martynov A. 2018. Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy 416: 1–35. https://doi.org/10.5852/ejt.2018.416

Riding R. & Watts N.R. 1991. The lower Wenlock reef sequence of Gotland: facies and lithostratigraphy. Geologiska Föreningen i Stockholm Förhandlingar 113: 343–372. https://doi.org/10.1080/11035899109453211

Samtleben C., Munnecke A., Bickert T. & Pätzold J. 1996. The Silurian of Gotland (Sweden): facies interpretation based on stable isotopes in brachiopod shells. Geologische Rundschau 85: 278–292. https://doi.org/10.1007/s005310050074

Simms M.J., Gale A.S., Gilliland P., Rose E.P.F. & Sevastopulo G.D. 1993. Echinodermata. In: Benton M.J. (ed.) The Fossil Record 2: 491–528. Chapman & Hall, London.

Sivhed U. 1990. Gotlands Län. In: Shaikh N.A., Bruun Å., Karis L., Kjellström G., Sivhed U., Sundberg A. & Wik N.-G. (eds) Kalksten och dolomit i Sverige, del 3 Södra Sverige. Sveriges Geologiska Undersökning, Rapporter och Meddelanden 56: 175–291.

Spencer W.K. 1925. A monograph of the British Palaeozoic Asterozoa. Monograph of the Palaeontographical Society, London 1922 (6): 237–324. https://doi.org/10.1080/02693445.1924.12035591

Spencer W.K. & Wright C.W. 1966. Asterozoans. In: Moore R.C. (ed.) Treatise on Invertebrate Paleontology, Part U, Echinodermata 3: U4–U107. University of Kansas Press and Geological Society of America, Lawrence.

Stöhr S., O’Hara T.D. & Thuy B. 2012. Global diversity of brittle stars (Echinodermata: Ophiuroidea). PloS ONE 7 (3): e31940. https://doi.org/10.1371/journal.pone.0031940

Stürtz B. 1886. Über paläozoische Seesterne. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie 1886 (2): 142–154. Available from https://www.biodiversitylibrary.org/page/44096290 [accessed 6 May 2019].

Thuy B. 2013. Temporary expansion to shelf depths rather than an onshore-offshore trend: the shallow-water rise and demise of the modern deep-sea brittle star family Ophiacanthidae (Echinodermata: Ophiuroidea). European Journal of Taxonomy 48: 1–242. https://doi.org/10.5852/ejt.2013.48

Thuy B. & Stöhr S. 2011. Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): new perspectives for ophiuroid micropalaeontology and classification. Zootaxa 3013: 1–47. https://doi.org/10.11646/zootaxa.3013.1.1

Thuy B. & Stöhr S. 2016. A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PloS ONE 11 (5): e0156140. https://doi.org/10.1371/journal.pone.0156140

Thuy B., Kutscher M. & Plachno B.J. 2015. A new brittle star from the early Carboniferous of Poland and its implications on Paleozoic modern-type ophiuroid systematics. Acta Palaeontologica Polonica 60: 923–929. https://doi.org/10.4202/app.00093.2014

Thuy B., Hagdorn H. & Gale A.S. 2017. Paleozoic echinoderm hangovers: waking up in the Triassic. Geology 45 (6): 531–534. https://doi.org/10.1130/G38909.1

Thuy B., Numberger-Thuy L.D. & Jagt J.W.M. 2018. An unusual assemblage of ophiuroids (Echinodermata) from the late Maastrichtian of South Carolina, USA. Swiss Journal of Palaeontology 137: 337–356. https://doi.org/10.1007/s13358-018-0166-9

Thuy B., Eriksson M.E., Kutscher M., Lindgren J., Numberger-Thuy L.D. & Wright D.F. 2022. Miniaturization during a Silurian environmental crisis generated the modern brittle star body plan. Communications Biology 5: 14. https://doi.org/10.1038/s42003-021-02971-9

Thuy B., Knox L., Numberger-Thuy L.D., Smith N.S. & Sumrall C.D. 2023. Ancient deep ocean as a harbor of biotic innovation revealed by Carboniferous ophiuroid microfossils. Geology 51 (2): 157–161. https://doi.org/10.1130/G50596.1

Watts N.R. & Riding R. 2000. Growth of rigid high-relief patch reefs, Mid-Silurian, Gotland, Sweden. Sedimentology 47: 979–994. https://doi.org/10.1046/j.1365-3091.2000.00334.x

Woolley S.N.C., Tittensor D.P., Dunstan P.K., Guillera-Arroita G., Lahoz-Monfort J.J., Wintle B.A., Worm B. & O’Hara T.D. 2016 Deep-sea diversity patterns are shaped by energy availability. Nature 533: 393–396. https://doi.org/10.1038/nature17937

Zittel K.A. von. 1895. Grundzüge der Paläontologie (Paläozoologie). Druck und Verlag von R. Oldenbourg, München, Leipzig. https://doi.org/10.5962/bhl.title.50145

Published
2024-08-21
How to Cite
Thuy, B., Eriksson, M. E., Kutscher, M., & Numberger-Thuy, L. D. (2024). The beginning of a success story: basalmost members of the extant ophiuroid clade from the Silurian of Gotland, Sweden. European Journal of Taxonomy, 947(1), 216–247. https://doi.org/10.5852/ejt.2024.947.2631
Section
Research article