Diamonds in the rough: Ibotyporanga (Araneae, Pholcidae) spiders in semi-arid Neotropical environments
Abstract
Ninetinae are a group of small and short-legged pholcids that are largely restricted to dry habitats where they lead reclusive lives in and under objects on the ground. They have long been rare in collections and poorly studied. The genus Ibotyporanga Mello-Leitão, 1944 previously contained five species: four from the Brazilian Cerrado and Caatinga biomes, and one from northern Venezuela. Based on recent focused collecting in Brazil and northern Colombia, we describe 19 new species, all based on males and females: Ibotyporanga ziruma Huber sp. nov., I. walekeru Huber sp. nov., I. piojo Huber sp. nov., I. itatim Huber sp. nov., I. xakriaba Huber sp. nov., I. xique Huber sp. nov., I. camarai Huber sp. nov., I. kanoe Huber sp. nov., I. imale Huber sp. nov., I. sertao Huber sp. nov., I. guanambi Huber sp. nov., I. capivara Huber sp. nov., I. payaya Huber sp. nov., I. tuxa Huber sp. nov., I. atikum Huber sp. nov., I. kiriri Huber sp. nov., I. ouro Huber sp. nov., I. itajubaquara Huber sp. nov. and I. canudos Huber sp. nov. In addition, we describe the previously unknown females of I. diroa Huber & Brescovit, 2003, and I. ramosae Huber & Brescovit, 2003, and present comprehensive SEM data of eight species. We analyze CO1 barcodes of 41 Ibotyporanga specimens representing 21 described and one undescribed species. Genetic distances among specimens and a species delimitation analysis suggest that some nominal species may in fact represent two or more species. A first morphological cladistic analysis of the genus strongly supports the monophyly of Ibotyporanga and suggests several clades within the genus, including one that is characterized by a strong elongation of the male palpal procursus. Geographically, the genus shows a disjunct distribution in Brazil and northern South America, separated by the Amazon biome. While plesiomorphic taxa (with a short procursus) are found in both regions, derived taxa (with an elongated procursus) are limited to Brazil. Species distribution modeling suggests that Ibotyporanga might also occur in poorly sampled regions of Ecuador, Peru, and Venezuela. In addition, a strong sampling bias towards the proximity of access routes suggests that the genus is much more diverse even in Brazil and Colombia. Two karyotyped species shared the diploid number of 2n♂ = 30 and an X1X2X3Y sex chromosome system.
References
Aharon S., Huber B.A. & Gavish-Regev E. 2017. Daddy-long-leg giants: revision of the spider genus Artema Walckenaer, 1837 (Araneae, Pholcidae). European Journal of Taxonomy 376: 1–57. https://doi.org/10.5852/ejt.2017.376
Araujo D., Schneider M.C., Paula-Neto E. & Cella D.M. 2012. Sex chromosomes and meiosis in spiders: A review. In: Swan E. (ed.) Meiosis - Molecular Mechanisms and Cytogenetic Diversity: 87–108. InTech, Rijeka.
Astrin J.J., Huber B.A., Misof B. & Kluetsch C.F.C. 2006. Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta 35: 441–457. https://doi.org/10.1111/j.1463-6409.2006.00239.x
Astrin J.J., Misof B. & Huber B.A. 2007. The pitfalls of exaggeration: molecular and morphological evidence suggests Kaliana is a synonym of Mesabolivar (Araneae: Pholcidae). Zootaxa 1646 (1): 17–30. https://doi.org/10.11646/zootaxa.1646.1.2
Astrin J.J., Höfer H., Spelda J., Holstein J., Bayer S., Hendrich L., Huber B.A., Kielhorn K.-H., Krammer H.-J., Lemke M., Monje J.C., Morinière J., Rulik B., Petersen M., Janssen H. & Muster C. 2016. Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS One 11 (9): e0162624. https://doi.org/10.1371/journal.pone.0162624
Ávila Herrera I.M., Král J., Pastuchová M., Forman M., Musilová J., Kořínková T., Šťáhlavský F., Zrzavá M., Nguyen P., Just P., Haddad C.R., Hiřman M., Koubová M., Sadílek D. & Huber B.A. 2021. Evolutionary pattern of karyotypes and meiosis in pholcid spiders (Araneae: Pholcidae): implications for reconstructing chromosome evolution of araneomorph spiders. BMC Ecology and Evolution 21: e75. https://doi.org/10.1186/s12862-021-01750-8
Benavente R. & Wettstein R. 1980. Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and a long diffuse stage. Chromosoma 77: 69–81. https://doi.org/10.1007/bf00292042
Brown B.V. 1993. A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times 11: 10.
Carvalho L.S. & Avelino M.T.L. 2010. Composição e diversidade da fauna de aranhas (Arachnida, Araneae) da Fazenda Nazareth, Município de José de Freitas, Piauí, Brasil. Biota Neotropica 10: 1–11. https://doi.org/10.1590/S1676-06032010000300001
Cock P.J., Antao T., Chang J.T., Chapman B.A., Cox C.J., Dalke A., Friedberg I., Hamelryck T., Kauff F., Wilczynski B. & de Hoon M.J. 2009. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25: 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
Crowther T.W., Glick H.B., Covey K.R., Bettigole C., Maynard D.S., Thomas S.M., Smith J.R., Hintler G., Duguid M.C., Amatulli G., Tuanmu M.-N., Jetz W., Salas C., Stam C., Piotto D., Tavani R., Green S., Bruce G., Williams S.J., Wiser S.K., Huber M.O., Hengeveld G.M., Nabuurs G.-J., Tikhonova E., Borchardt P., Li C.-F., Powrie L.W., Fischer M., Hemp A., Homeier J., Cho P., Vibrans A.C., Umunay P.M., Piao S.L., Rowe C.W., Ashton M.S., Crane P.R. & Bradford M.A. 2015. Mapping tree density at a global scale. Nature 525: 201–205. https://doi.org/10.1038/nature14967
Diniz-Filho J.A.F., Santos T., Rangel T.F. & Bini L.M. 2012. A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genetics and Molecular Biology 35: 673–679. https://doi.org/10.1590/S1415-47572012005000053
Dolejš P., Kořínková T., Musilová J., Opatová V., Kubcová L., Buchar J. & Král J. 2011. Karyotypes of central European spiders of the genera Arctosa, Tricca, and Xerolycosa (Araneae: Lycosidae). European Journal of Entomology 108: 1–16. https://doi.org/10.14411/eje.2011.001
Eberle J., Dimitrov D., Valdez-Mondragón A. & Huber B.A. 2018. Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology 18: e141. https://doi.org/10.1186/s12862-018-1244-8
Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783–791. https://doi.org/10.2307/2408678
Fick S.E. & Hijmans R.J. 2017. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37: 4302–4315. https://doi.org/10.1002/joc.5086
Gertsch W.J. 1982. The spider genera Pholcophora and Anopsicus (Araneae, Pholcidae) in North America, Central America and the West Indies. Texas Memorial Museum, Bulletin 28: 95–144.
Goloboff P.A. 1993. NONA (NO NAME) ver. 2. Published by the author, Tucumán, Argentina. Available from http://www.lillo.org.ar/phylogeny/ [accessed 28 Aug. 2024].
Goloboff P.A., Farris J.S. & Nixon K. 2004. TNT, tree analysis using new technology, version 1.1, sponsored by the Willi Hennig Society. Available from http://www.lillo.org.ar/phylogeny/ [accessed 28 Aug. 2024].
Goloboff P.A., Farris J.S. & Nixon K. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010
Hoang D.T., Chernomor O., von Haeseler A., Minh B.Q. & Vinh L.S. 2017. UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35: 518–522. https://doi.org/10.1093/molbev/msx281
Huber B.A. 2000. New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History 254: 1–348. https://doi.org/brh26h
Huber B.A. 2006. Cryptic female exaggeration: the asymmetric female internal genitalia of Kaliana yuruani (Araneae: Pholcidae). Journal of Morphology 276: 705–712. https://doi.org/10.1002/jmor.10431
Huber B.A. 2011. Phylogeny and classification of Pholcidae (Araneae): an update. Journal of Arachnology 39: 211–222. https://doi.org/10.1636/CA10-57.1
Huber B.A. 2018. The South American spider genera Mesabolivar and Carapoia (Araneae, Pholcidae): new species and a framework for redrawing generic limits. Zootaxa 4395 (1): 1–178. https://doi.org/10.11646/zootaxa.4395.1.1
Huber B.A. 2022. Revisions of Holocnemus and Crossopriza: the spotted-leg clade of Smeringopinae (Araneae, Pholcidae). European Journal of Taxonomy 795: 1–241. https://doi.org/10.5852/ejt.2022.795.1663
Huber B.A. & Brescovit A.D. 2003. Ibotyporanga Mello-Leitão: tropical spiders in Brazilian semi-arid habitats (Araneae: Pholcidae). Insect Systematics and Evolution 34: 15–20. https://doi.org/10.1163/187631203788964926
Huber B.A. & Carvalho L.S. 2019. Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa 4546 (1): 1–96. https://doi.org/10.11646/zootaxa.4546.1.1
Huber B.A. & Dimitrov D. 2014. Slow genital and genetic but rapid non-genital and ecological differentiation in a pair of spider species (Araneae, Pholcidae). Zoologischer Anzeiger 253: 394–403. https://doi.org/10.1016/j.jcz.2014.04.001
Huber B.A. & Villarreal O. 2020. On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy 718: 1–317. https://doi.org/10.5852/ejt.2020.718.1101
Huber B.A., Eberle J. & Dimitrov D. 2018. The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys 789: 51–101. https://doi.org/10.3897/zookeys.789.22781
Huber B.A., Caspar K. & Eberle J. 2019. New species reveal unexpected interspecific microhabitat diversity in the genus Uthina Simon, 1893 (Araneae: Pholcidae). Invertebrate Systematics 33: 181–207. https://doi.org/10.1071/IS18002
Huber B.A., Meng G., Acurio A.E., Astrin J.J., Inclán D.J., Izquierdo M. & Valdez-Mondragón A. 2022. Metagonia spiders of Galápagos: blind cave-dwellers and their epigean relatives (Araneae, Pholcidae). Invertebrate Systematics 36: 647–678. https://doi.org/10.1071/IS21082
Huber B.A., Meng G., Král J., Ávila Herrera I.M., Izquierdo M.A. & Carvalho L.S. 2023a. High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society 198: 534–591. https://doi.org/10.1093/zoolinnean/zlac100
Huber B.A., Meng G., Váldez-Mondragón A., Král J., Ávila Herrera I.M. & Carvalho L.S. 2023b. Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae). European Journal of Taxonomy 880: 1–89. https://doi.org/10.5852/ejt.2023.880.2173
Huber B.A., Meng G., Král J., Ávila Herrera I.M. & Izquierdo M.A. 2023c. Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae). European Journal of Taxonomy 900: 32–80. https://doi.org/10.5852/ejt.2023.900.2301
Huber B.A., Meng G., Dupérré N., Herrera M., Inclán D. & Wipfler B. 2023d. Humpback spiders from Ecuador: relationships, prosoma ‘inflation’, and genital asymmetry (Araneae: Pholcidae: Mecolaesthus). Invertebrate Systematics 37: 117–151. https://doi.org/10.1071/IS22052
Huber B.A., Meng G., Dupérré N., Astrin J. & Herrera M. 2023e. Andean giants: Priscula spiders from Ecuador, with notes on species groups and egg-sac troglomorphism (Araneae: Pholcidae). European Journal of Taxonomy 909: 1–63. https://doi.org/10.5852/ejt.2023.909.2351
Huber B.A., Meng G., Dederichs T.M., Michalik P., Forman M. & Král J. 2024a. Castaways: the Leeward Antilles endemic spider genus Papiamenta (Araneae: Pholcidae). Invertebrate Systematics 38 (2): IS23052. https://doi.org/10.1071/IS23052
Huber B.A., Meng G., Cabra García J. & Carvalho L.S. 2024b. Thriving in dry conditions: on the Neotropical spider genus Galapa (Araneae: Pholcidae). Zootaxa 5419 (3): 301–347. https://doi.org/10.11646/zootaxa.5419.3.1
Huber B.A., Meng G. & Valdez-Mondragón A. 2024c. Notes on Chisosa (Araneae, Pholcidae), with the description of a new species from Mexico. Zootaxa 5419 (2): 217–244. https://doi.org/10.11646/zootaxa.5419.2.3
Izquierdo M.A., Dederichs T.M., Cargnelutti F. & Michalik P. 2023. Copulatory behaviour and genital mechanics suggest sperm allocation by a non-intromittent sclerite in a pholcid spider. Royal Society Open Science 10 (5): e230263. https://doi.org/10.1098/rsos.230263
Jäger P. 2005. Lengthening of embolus and copulatory duct: a review of an evolutionary trend in the spider family Sparassidae (Araneae). Acta Zoologica Bulgarica Suppl. 1: 49–62.
Kalyaanamoorthy S., Minh B.Q., Wong T.K.F., von Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587–589. https://doi.org/10.1038/nmeth.4285
Kassambara A. 2014. easyGgplot2: Perform and customize easily a plot with ggplot2. R package version 1.0.0.9000. Available from http://www.sthda.com [accessed 28 Aug. 2024].
Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780. https://doi.org/10.1093/molbev/mst010
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581
Kitano J., Ross J.A., Mori S., Kume M., Jones F.C., Chan Y.F., Absher D.M., Grimwood J., Schmutz J., Myers R.M., Kingsley D.M. & Peichel C.L. 2009. A role for a neo-sex chromosome in stickleback speciation. Nature 461 (7267): 1079–1083. https://doi.org/10.1038/nature08441
Kořínková T. & Král J. 2013. Karyotypes, sex chromosomes, and meiotic division in spiders. In: Nentwig W. (ed.) Spider Ecophysiology: 159–171. Springer, Berlin. https://doi.org/10.1007/978-3-642-33989-9_12
Král J. 2007. Evolution of multiple sex chromosomes in the spider genus Malthonica (Araneae: Agelenidae) indicates unique structure of the spider sex chromosome systems. Chromosome Research 15: 863–879. https://doi.org/10.1007/s10577-007-1169-3
Král J., Musilová J., Šťáhlavský F., Řezáč M., Akan Z., Edwards R.L., Coyle F.A. & Ribera Almerje C. 2006. Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders (Araneae: Araneomorphae). Chromosome Research 14: 859–880. https://doi.org/10.1007/s10577-006-1095-9
Král J., Kořínková T., Forman M. & Krkavcová L. 2011. Insights into the meiotic behavior and evolution of multiple sex chromosome systems in spiders. Cytogenetic and Genome Research 133 (1): 43–66. https://doi.org/10.1159/000323497
Král J., Kořínková T., Krkavcová L., Musilová J., Forman M., Ávila Herrera I.M., Haddad C.R., Vítková M., Henriques S., Palacios Vargas J.G. & Hedin M. 2013. Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biological Journal of the Linnean Society 109: 377–408. https://doi.org/10.1111/bij.12056
Král J., Forman M., Kořínková T., Reyes Lerma A.C., Haddad C.R., Musilová J., Řezáč M., Ávila Herrera I.M., Thakur S., Dippenaar-Schoeman A.S., Marec F., Horová L. & Bureš P. 2019. Insights into the karyotype and genome evolution of haplogyne spiders indicate a polyploid origin of lineage with holokinetic chromosomes. Scientific Reports 9: e3001. https://doi.org/10.1038/s41598-019-39034-3
Král J., Ávila Herrera I.M., Šťáhlavský F., Sadílek D., Pavelka J., Chatzaki M. & Huber B.A. 2022. Karyotype differentiation and male meiosis in European clades of the spider genus Pholcus (Araneae, Pholcidae). Comparative Cytogenetics 16 (4): 185–209. https://doi.org/10.3897/compcytogen.v16i4.85059
Letunic I. & Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49: W293–W296. https://doi.org/10.1093/nar/gkab301
Levan A.K., Fredga K. & Sandberg A.A. 1964. Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
Maddison W. 2018. Please, don’t use CO1 barcodes alone for spider phylogeny. In: Wayne Maddison’s Blog: Discovering Spiders, Evolutionary History, and the World. Available from https://waynemaddison.wordpress.com/2018/11/22/please-dont-use-co1-barcodes-alone-for-spider-phylogeny/ [accessed 28 Aug. 2024].
Magalhães I., Fernandes L., Ramírez M. & Bonaldo A. 2016. Phylogenetic position and taxonomic review of the Ianduba spiders (Araneae: Corinnidae) endemic to the Brazilian Atlantic rainforest. Arthropod Systematics & Phylogeny 74: 127–159. https://doi.org/10.3897/asp.74.e31843
Mello-Leitão C.F. de 1944. Algumas aranhas da região amazônica. Boletim do Museu Nacional do Rio de Janeiro (Nova Serie, Zoologia) 25: 1–12.
Minh B.Q., Schmidt H.A., Chernomor O., Schrempf D., Woodhams M.D., von Haeseler A. & Lanfear R. 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution 37: 1530–1534. https://doi.org/10.1093/molbev/msaa015
Morrone J.J. 2017. Neotropical Biogeography: Regionalization and Evolution. CRC Press, Boca Raton. Available from https://www.taylorfrancis.com/books/9781315390659 [accessed 28 Aug. 2024].
Nixon K.C. 2002. Winclada, version 1.00.08. Program and documentation. Available from http://www.diversityoflife.org/winclada/ [accessed 28 Aug. 2024].
Oliveira U., Paglia A.P., Brescovit A.D., de Carvalho C.J.B., Silva D.P., Rezende D.T., Leite F.S.F., Batista J.A.N., Barbosa J.P.P.P., Stehmann J.R., Ascher J.S., de Vasconcelos M.F., De Marco P., Löwenberg-Neto P., Dias P.G., Ferro V.G. & Santos A.J. 2016. The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity and Distributions 22: 1232–1244. https://doi.org/10.1111/ddi.12489
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877–884. https://doi.org/10.1038/44766
Paula-Neto E., Cella D.M., Araujo D., Brescovit A.D. & Schneider M.C. 2017. Comparative cytogenetic analysis among filistatid spiders (Araneomorphae: Haplogynae). Journal of Arachnology 45: 123–128. https://doi.org/10.1636/M14-69.1
Puillandre N., Brouillet S. & Achaz G. 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21: 609–620. https://doi.org/10.1111/1755-0998.13281
Ratnasingham S. & Hebert P.D.N. 2007. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
Revell L.J. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223. https://doi.org/10.1111/j.2041-210X.2011.00169.x
Saitou N. & Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sember A., Pappová M., Forman M., Nguyen P., Marec F., Dalíková M., Divišová K., Doležálková-Kaštánková M., Zrzavá M., Sadílek D., Hrubá B. & Král J. 2020. Patterns of sex chromosome differentiation in spiders: Insights from comparative genomic hybridisation. Genes (Basel) 11: e849. https://doi.org/10.3390/genes11080849
Silva D.R. da, Soares-Lopes C.R.A., Gressler E. & Eisenlohr P.V. 2020. Woody vegetation associated with rocky outcrops in Southern Amazonia: a starting point to unveil a unique flora. Biota Neotropica 20: 1–16. https://doi.org/10.1590/1676-0611-bn-2019-0874
Simard M., Pinto N., Fisher J.B. & Baccini A. 2011. Mapping forest canopy height globally with spaceborne lidar. Journal of Geophysical Research 116: G04021. https://doi.org/10.1029/2011JG001708
Suyama M., Torrents D. & Bork P. 2006. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research 34: W609–W612. https://doi.org/10.1093/nar/gkl315
Suzuki S. 1954. Cytological studies in spiders. III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families, with general considerations on chromosomal evolution. Journal of Science of Hiroshima University Series B 2: 23–136.
Tamura K., Stecher G. & Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution 38: 3022–3027. https://doi.org/10.1093/molbev/msab120
Wickham H. 2011. ggplot2. Wiley Interdisciplinary Reviews: Computational Statistics 3: 180–185. https://doi.org/10.1002/wics.147
Yang C., Zheng Y., Tan S., Meng G., Rao W., Yang C., Bourne D.G., O’Brien P.A., Xu J., Liao S., Chen A., Chen X., Jia X., Zhang A. & Liu S. 2020. Efficient COI barcoding using high throughput single-end 400 bp sequencing. BMC Genomics 21: e862. https://doi.org/10.1186/s12864-020-07255-w
Zomer R.J., Xu J. & Trabucco A. 2022. Version 3 of the Global Aridity Index and Potential Evapotranspiration Database. Scientific Data 9: e409. https://doi.org/10.1038/s41597-022-01493-1
Copyright (c) 2024 Bernhard A. Huber, Guanliang Meng, Jiří Král, Ivalú M. Ávila Herrera, Leonardo S. Carvalho
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.