Two new meiofaunal species of Trilobodrilus (Dinophilidae, Annelida) from California, USA

  • Alexandra Kerbl Marine Biological Section – Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø
  • Emilie Hernes Vereide Marine Biological Section – Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø
  • Brett C. Gonzalez Marine Biological Section – Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø
  • Greg W. Rouse Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093–0202
  • Katrine Worsaae Marine Biological Section – Department of Biology, University of Copenhagen, Universitetsparken 4, 2100 Copenhagen Ø
Keywords: Interstitial, intertidal zone, meiobenthos, morphology


We describe two new species of the annelid genus Trilobodrilus Remane, 1925 (Dinophilidae Verill, 1892) from an intertidal and a subtidal location in San Diego, California. These two species show morphological and molecular divergences between each other and the previously described, geographically distant species. Intertidal T. windansea sp. nov. differs from subtidal T. ellenscrippsae sp. nov. most remarkably in the number and pattern of ciliary tufts and bands on the prostomium and along the body length, besides showing ca 15% difference in gene fragments of COI and CytB. Trilobodrilus windansea sp. nov., though nesting with T. ellenscrippsae sp. nov. in the molecular phylogenetic analyses, morphologically resembles the Japanese T. itoi Kajihara, Ikoma, Yamasaki & Hiruta, 2015 most closely, but still differs from this species in the higher number of apical ciliary tufts, an additional ciliary row posterior to the second ciliary band, and by lacking a forth ciliary band and segmentally arranged lateral ciliary tufts. Trilobodrilus ellenscrippsae sp. nov. is morphologically most similar to the Japanese T. nipponicus Uchida & Okuda, 1943, but is much shorter, has more apical ciliary tufts, and less regularly arranged lateral ciliary tufts along the body. All species differ significantly in all compared gene fragments, and no obvious correlation was found between habitat and the species morphology or relationships.


Ax P. 1968. Das Fortpflanzungsverhalten von Trilobodrilus (Archiannelida, Dinophilidae). Marine Biology 1: 330–335.

Boaden P.J.S. 1963. Behaviour and distribution of the archiannelid Trilobodrilus heideri. Journal of the Marine Biological Association of the United Kingdom 43: 239–250.

Boaden P.J.S. 1966. Interstitial fauna from northern Ireland. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven 2: 125–136.

Brown S., Rouse G., Hutchings P. & Colgan D. 1999. Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships. Australian Journal of Zoology 47: 499–516.

Cohen B.L., Améziane N., Eleaume M. & de Forges B.R. 2003. Crinoid phylogeny: a preliminary analysis (Echinodermata: Crinoidea). Marine Biology 144: 605–617.

Fofanova E.G., Nezlin L.P. & Voronezhskaya E.E. 2014. Ciliary and nervous structures in juvenile females of the annelid Dinophilus gyrociliatus (O. Schmidt, 1848) (Annelida: Polychaeta). Russian Journal of Marine Biology 40: 43–52.

Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.

Giribet G., Carranza S., Baguñà J., Riutort M. & Ribera C. 1996. First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Molecular Biology and Evolution 13: 76–84.

Gonzalez B.C., Martínez A., Borda E., Iliffe T.M., Fontaneto D. & Worsaae K. 2017. Genetic spatial structure of an anchialine cave annelid indicates connectivity within – but not between – islands of the Great Bahama Bank. Molecular Phylogenetics and Evolution 109: 259–270.

Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symposium 41: 95–98. Available from [accessed 12 Feb. 2018].

Harmer S.F. 1889. Notes on the anatomy of Dinophilus. Proceedings of the Cambridge Philosophical Society 6: 119–143.

Hillis D.M. & Dixon M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. The Quarterly Review of Biology 66: 411–453.

Ibrahim A.K., Gamil I.S., Abd-El baky A.A., Hussein M.M. & Tohamy A.A. 2011. Comparative molecular and conventional detection methods of Babesia equi (B. equi) in Egyptian equine. Global Veterinaria 7 (2): 201–210.

Jägersten G. 1944. Zur Kenntnis der Morphologie, Enzystierung und Taxonomie von Dinophilus. Kungliga Svenska Vetenskapsakademiens Handlingar 21: 1–50.

Jägersten G. 1951. Life cycle of Dinophilus, with special reference to the encystment and its dependence on temperature. Oikos 3: 143–165.

Jones E.R. & Ferguson F.F. 1957. The genus Dinophilus (Archiannelida) in the United States. American Midland Naturalist 57 (2): 440–449.

Kajihara H., Ikoma M., Yamasaki H. & Hiruta S.F. 2015. Trilobodrilus itoi sp. nov., with a re-description of T. nipponicus (Annelida: Dinophilidae) and a molecular phylogeny of the genus. Zoological Science 32: 405–417.

Katoh K. & Standley D.M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772–780.

Katoh K., Kuma K., Toh H. & Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33 (5): 511–518.

Kerbl A., Fofanova E.G., Mayorova T.D., Voronezhskaya E.E. & Worsaae K. 2016. Comparison of neuromuscular development in two dinophilid species (Annelida) suggests progenetic origin of Dinophilus gyrociliatus. Frontiers in Zoology 13: 49.

Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution 33: 1870–1874.

Lovejoy C. & Potvin M. 2011. Microbial eukaryotic distribution in a dynamic Beaufort Sea and the Arctic Ocean. Journal of Plankton Research 33: 431–444.

Markmann M. 2000. Entwicklung und Anwendung einer 28S rDNA-Sequenzdatenbank zur Aufschlüsselung der Artenvielfalt limnischer Meiobenthosfauna im Hinblick auf den Einsatz moderner Chiptechnologie. PhD Thesis, University of Munich, Germany.

Martínez A., Di Domenico M., Rouse G.W. & Worsaae K. 2015. Phylogeny and systematics of Protodrilidae (Annelida) inferred with total evidence analyses. Cladistics 31: 250–276.

McClain M. 2017. Ellen Browning Scripps: New Money and American Philanthropy. University of Nebraska Press, Lincoln.

Meyer C.P. 2003. Molecular systematics of cowries (Gastropoda: Cypraeidae) and diversification patterns in the tropics. Biological Journal of the Linnean Society 79: 401–459.

Miller M.A., Pfeiffer W. & Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010: 1–8. New Orleans, LA.

Nickisch-Rosenegk von M., Brown W.M. & Boore J.L. 2001. Complete sequence of the mitochondrial genome of the tapeworm Hymenolepis diminuta: gene arrangements indicate that Platyhelminths are Eutrochozoans. Molecular Biology and Evolution 18: 721–730.

Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25 (7): 1253–1256.

Rao C.G. 1973. Trilobodrilus indicus sp. nov. (Dinophilidae, Archiannelida) from Andhra coast. Proceedings of the Indian Academy of Sciences, Section B 77: 101–108.

Remane A. 1925. Diagnosen neuer Archianneliden. Zoologischer Anzeiger 65: 15–17.

Repiachoff W. 1886. On the anatomy and developmental history of Dinophilus gyrociliatus Schmidt. Zapiski Novorossilskogo obshchestva Estestvoispytatelei 10 (2): 1–77. [In Russian.]

Riser N.W. 1999. Description of a new species of dinophilid polychaete, with observations on other dinophilids and interstitial polychaetes in New England. Northeastern Naturalist 6: 211–220.

Schmidt O. 1858. Die rhabdocoelen Strudelwürmer aus der Umgebung von Krakau. Denkschriften der königlichen Akademie der Wissenschaften, mathematische naturwissenschaftliche Classe 165: 20–46.

Schneider C.A., Rasband W.S. & Eliceiri K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature 9: 671–675.

Struck T.H., Westheide W. & Purschke G. 2002. Progenesis in Eunicida (“Polychaeta,” Annelida) – separate evolutionary events? Evidence from molecular data. Molecular Phylogenetics and Evolution 25: 190–199.

Uchida T. & Okuda S. 1943. A new species of Archiannelida, Trilobodrilus nipponicus sp. nov. Journal of the Faculty of Science Hokkaido Imperial University Series VI 8: 301–305.

Vaidya G., Lohman D.J. & Meier R. 2011. SequenceMatrix: concatenation software for the fast assembly of multi‐gene datasets with character set and codon information. Cladistics 27: 171–180.

Westheide W. 1967. Die Gattung Trilobodrilus (Archiannelida, Polychaeta) von der deutschen Nordseeküste. Helgoländer Meeresuntersuchungen 16 (3): 207–215.

Westheide W. 2008. Polychaetes: Interstitial Families, ed. 2. In: Crothers J.H. (ed.) Synopses of the British Fauna Publications are a Series of Concise, Systematic Works on Selected Groups of Animals designed for use as Field Guides. The Linnean Society of London (Field Studies Council Shrewsbury), London.

Wieser W. 1957. Archiannelids from the intertidal of Puget Sound. Transactions of the American Microscopical Society 76: 275.

WoRMS Editorial Board. 2016. World Register of Marine Species. Available from [accessed 10 October 2017].

How to Cite
Kerbl, A., Vereide, E. H., Gonzalez, B. C., Rouse, G. W., & Worsaae, K. (2018). Two new meiofaunal species of Trilobodrilus (Dinophilidae, Annelida) from California, USA. European Journal of Taxonomy, (421).