Two new species of groundwater amphipods of the genus Niphargus Schiödte, 1849 from northwestern Iran

Mahmoud Mamaghani-Shishvan, Somayeh Esmaeili-Rineh

Abstract


This study was conducted to describe and illustrate two new species of groundwater amphipods from the northern parts of the Zagros Mountains in West Azerbaijan Province, Iran. Mitochondrial (COI) and nuclear (28S rDNA) fragments as well as several morphological traits were used to characterize Niphargus urmiensis sp. nov. and Niphargus fiseri sp. nov. The phylogenetic analyses showed that the nucleotide differences between the recently described species and their close allies are attributed to their distinctiveness. The molecular analysis also introduced that the new species are placed within the clade comprising Iranian species as a sister taxon. The genetic distances between N. urmiensis sp. nov. and N. fiseri sp. nov. are 7.6% and 1.6%, respectively based on the COI and 28S rDNA gene fragments.

Keywords


28S rDNA and COI genes; morphological data; new niphargids; taxonomy; West Azerbaijan Province

Full Text:

PDF PDF/A


DOI: https://doi.org/10.5852/ejt.2019.546

References


Asmyhr M., Linke S., Hose G. & Nipperess D. 2014. Systematic conservation planning for groundwater ecosystems using phylogenetic diversity. PLoS ONE 9 (12): e115132. https://doi.org/10.1371/journal.pone.0115132

Astrin J.J. & Stüben P.E. 2008. Phylogeny in cryptic weevils: molecules, morphology and new genera of Western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22 (5): 503–522. https://doi.org/10.1071/IS07057

Brad T., Fišer C., Flot J-F. & Sarbu S.M. 2015. Niphargus dancaui sp. nov. (Amphipoda, Niphargidae) – a new species thriving in sulfidic groundwaters in southeastern Romania. European Journal of Taxonomy 164: 1–28. https://doi.org/10.5852/ejt.2015.164

Castany G. 1982. Principes et méthodes de l’hydrogéologie. Dunod Université, Paris.

Deharveng L., Stoch F., Gibert J., Bedos A., Galassi D., Zagmajster M., Brancelj A., Camacho A., Fiers F., Martin P., Giani N., Magniez G. & Marmonier P. 2009. Groundwater biodiversity in Europe. Freshwater Biology 54: 709–726. https://doi.org/10.1111/j.1365-2427.2008.01972.x

Eme D., Zagmajster M., Delić T. & Malard F. 2017. Do cryptic species matter in macroecology? Sequencing European groundwater crustaceans yields smaller ranges but does not challenge biodiversity determinants. Ecography 41 (2): 424–436. https://doi.org/10.1111/ecog.02683

Esmaeili-Rineh S. 2018. A new data of freshwater amphipods of genus Niphargus Schiödte, 1849 from Lorestan Province in Iran. Zootaxa 4531 (2): 242–250. https://doi.org/10.11646/zootaxa.4531.2.5

Esmaeili-Rineh S. & Sari A. 2013. Two new species of Niphargus Schiödte, 1849 (Crustacea: Amphipoda: Niphargidae) from two caves in Iran. Journal of Natural History 47: 2649–2669. https://doi.org/10.1080/00222933.2013.802041

Esmaeili-Rineh S., Sari A. & Fišer C. 2015a. Making future taxonomy of Niphargus (Crustacea: Amphipoda: Niphargidae) in the Middle East easier: DELTA database of Middle East species with description of four new species from Iran. Zootaxa 4020: 401–430. https://doi.org/10.11646/zootaxa.4020.3.1

Esmaeili-Rineh S., Sari A., Delić T., Moškrič A. & Fišer C. 2015b. Molecular phylogeny of the subterranean genus Niphargus (Crustacea: Amphipoda) in the Middle East: a comparison with European niphargids. Zoological Journal of the Linnaean Society 175: 812–826. https://doi.org/10.1111/zoj.12296

Esmaeili-Rineh S., Heidari F., Fišer C. & Akmali V. 2016. Description of new endemic species of the genus Niphargus Schiödte, 1849 (Amphipoda: Niphargidae) from a karst spring in Zagros Mountains in Iran. Zootaxa 4126: 338–350. https://doi.org/10.11646/zootaxa.4126.3.2

Esmaeili-Rineh S., Mirghaffari S.A. & Sharifi M. 2017a. The description of a new species of Niphargus from Iran based on morphological and molecular data. Subterranean Biology 22: 43–58. https://doi.org/10.3897/subtbiol.22.11286

Esmaeili-Rineh S., Sari A. Fišer C. & Bargrizaneh Z. 2017b. Completion of molecular taxonomy: description of four amphipod species (Crustacea: Amphipoda: Niphargidae) from Iran and release of database for morphological taxonomy. Zoologischer Anzeiger 271: 57–79. https://doi.org/10.1016/j.jcz.2017.04.009

Fišer C., Zakšek V., Zagmajster M. & Sket B. 2007. Taxonomy and biogeography of Niphargus steueri (Crustacea: Amphipoda). Limnology 8: 297–309. https://doi.org/10.1007/s10201-007-0221-5

Fišer C., Çamur-Elipek B. & Özbek M. 2009a. The subterranean genus Niphargus (Crustacea, Amphipoda) in the Middle East: a faunistic overview with descriptions of two new species. Zoologischer Anzeiger 248: 137–150. https://doi.org/10.1016/j.jcz.2009.03.003

Fišer C., Trontelj P., Luštrik R. & Sket B. 2009b. Toward a unified taxonomy of Niphargus (Crustacea: Amphipoda): a review of morphological variability. Zootaxa 2061: 1–22. https://doi.org/10.11646/zootaxa.2061.1.1

Fišer C., Konec M., Alther R., Švara V. & Altermatt F. 2017. Taxonomic, phylogenetic and ecological diversity of Niphargus (Amphipoda: Crustacea) in the Hölloch cave system (Switzerland). Systematics and Biodiversity 15: 218–237. https://doi.org/10.1080/14772000.2016.1249112

Frey W. & Probst P. 1986. A synopsis of the vegetation of Iran In: Kiirschner H. (ed) Contributions to the Vegetation of Southwest Asia: 9–43. Dr. Ludwig Reichert Verlag. Wiesbaden.

Glanville K., Schulz C., Tomlinson M. & Butler D. 2016. Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia. Subterranean Biology 17: 55–76. https://doi.org/10.3897/subtbiol.17.7542

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Humphreys W.F. 2006. Groundwater fauna. Australian State of the Environment Committee, Department of the Environment and Heritage, Canberra.

Jörger K.M. & Schrödl M. 2013. How to describe a cryptic species? Practical challenges of molecular taxonomy. Frontiers in Zoology 10 (1): 59. https://doi.org/10.1186/1742-9994-10-59

Karaman S. 1952. Podrod Stygoniphargus u Sloveniji i Hrvatskoj, Poseban otisak iz 25. knjige Prirodoslovnih istraživanja. Academia Scientiarum et Artium Slavorum Meridionalium 1: 5–38.

Karaman G.S. 1998. First discovery of the family Niphargidae (Gammaridea) in Iran (Contribution to the knowledge of the Amphipoda 234). Glas Od Prir Nauka–Crnog Akad Nauka Umjet 12: 9–22.

Karaman G.S. 2018. Further discovery of new or partially known taxa of the genus Niphargus Schiödte, 1849 (fam. Niphargidae) in Greece (Contribution to the knowledge of the Amphipoda 302). Agriculture and Forestry 64 (2): 5–31.

Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120. https://doi.org/10.1007/BF01731581

Madjnoonian H., Kiabi B.H. & Danesh M. 2005. Readings in Zoogeography of IraN. Part I. Department of Environment, Iran.

Mamaghani-Shishvan M., Esmaeili-Rineh S. & Fišer C. 2017. An integrated morphological and molecular approach to a new species description of amphipods in the Niphargidae from two caves in west of Iran. Zoological Studies 56: 33. https://doi.org/10.6620/ZS.2017.56-33

Posada D. 2008. jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. https://doi.org/10.1093/molbev/msn083

Raeisi E. 2004. Iran cave and karst. In: Gunn J. (ed.) Encyclopedia of Cave and Karst: 460–461. Fitzroy Dearborn, New York.

Rambaut A. & Drummond A.J. 2009. Bayesian Evolutionary Analysis Sampling Trees (BEAST).Version 1.7.4.

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Stokkan M., Jurado-Rivera J.A., Oromí P., Juan C., Jaume D. & Ponsa J. 2018. Species delimitation and mitogenome phylogenetics in the subterranean genus Pseudoniphargus (Crustacea: Amphipoda). Molecular Phylogenetic and Evolution 127: 988–999. https://doi.org/10.1016/j.ympev.2018.07.002

Tamura K., Peterson D., Peterson N., Stecher G., Nei M. & Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731–2739. https://doi.org/10.1093/molbev/msr121

Thompson J.D., Higgins D.G. & Gibson T. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Väinölä R., Witt J.D.S., Grabowski M., Bradbury J.H., Jazdzewski K. & Sket B. 2008. Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595: 241–255. https://doi.org/10.1007/s10750-007-9020-6

Verovnik R., Sket B. & Trontelj P. 2005. The colonization of Europe by the freshwater crustacean Asellus aquaticus (Crustacea: Isopoda) proceeded from ancient refugia and was directed by habitat connectivity. Molecular Ecology 14: 4355–4369. https://doi.org/10.1111/j.1365-294X.2005.02745.x

White W.B. 2007. Groundwater flow in karstic aquifers. In: Delleur J.W. (ed.) The Handbook of Groundwater Engineering. 2nd edition 21: 1–47. CRC Press & Taylor and Francis Group.

Witt J.D.S., Threloff D.L. & Hebert P.D.N. 2006. DNA barcoding reveals extraordinary cryptic diversity in an amphipod genus: implications for desert spring conservation. Molecular Ecology 15: 3073–3082. https://doi.org/10.1111/j.1365-294X.2006.02999.x


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/