Mysterious chokeberries: new data on the diversity and phylogeny of Aronia Medik. (Rosaceae)

Alexey Shipunov, Sofia Gladkova, Polina Timoshina, Hye Ji Lee, Jinhee Choi, Sarah Despiegelaere, Bryan Connolly

Abstract


Aronia Medik. (chokeberry, Rosaceae) is a genus of woody shrubs with two or three North American species. Species boundaries and relationships between species of Aronia are frequently under question. The only European species in the genus, A. mitschurinii A.K.Skvortsov & Maitul., is suggested to be an inter-generic hybrid. In order to clarify the relationships between species of Aronia, we performed several morphometric and molecular analyses and found that the molecular and morphological diversity within data on American Aronia is low, and species boundaries are mostly not clearly expressed. Whereas morphology is able to separate American species from A. mitschurinii, there is no support for such discrimination from the molecular data; our analyses did not reveal evidence of A. mitschurinii hybrid origin. We believe that higher-resolution markers are needed to resolve species boundaries and putative hybridization events.


Keywords


Aronia; Rosaceae; DNA; morphology; hybridity

Full Text:

PDF PDF/A


DOI: https://doi.org/10.5852/ejt.2019.570

References


Adams D.C. & Otarola-Castillo E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393–399.

https://doi.org/10.1111/2041-210X.12035

Brand M.H. 2010. Aronia: native shrubs with untapped potential. Arnoldia 67: 14–25.

Burgess M.B., Cushman K.R., Doucette E.T., Frye C.T. & Campbell C.S. 2015. Understanding diploid diversity: A first step in unraveling polyploid, apomictic complexity in Amelanchier. American Journal of Botany 102: 2041–2057. https://doi.org/10.3732/ajb.1500330

Campbell C.S., Evans R.C., Morgan D.R., Dickinson T.A. & Arsenault M.P. 2007. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Systematics and Evolution 266: 119–145. https://doi.org/10.1007/s00606-007-0545-y

Connolly B.A. 2009. × Sorbaronia fallax (Rosaceae): A new record of an intergeneric hybrid in Connecticut. Rhodora 111: 123–125. https://doi.org/10.3119/08-23.1

Connolly B.A. 2014. Collection, description, taxonomic relationships, fruit biochemistry, and utilization of Aronia melanocarpa, A. arbutifolia, A. prunifolia, and A. mitschurinii. PhD thesis. Paper 342. University of Connecticut.

Dluzewska J., Slesak I. & Kruk J. 2013. Molecular analysis of Sorbus sp. from the Pieniny Mts. and its relation to other Sorbus species. Acta Biologica Cracoviensia, Series Botanica 55: 86–92.

https://doi.org/10.2478/abcsb-2013-0009

Guo W., Yu Y., Shen R.J., Liao W.B., Chin S.W. & Potter D. 2011. A phylogeny of Photinia sensu lato (Rosaceae) and related genera based on nrITS and cpDNA analysis. Plant Systematics and Evolution 291: 91–102. https://doi.org/10.1007/s00606-010-0368-0

Hardin J.W. 1973. The enigmatic chokeberries. Bulletin of the Torrey Botanical Club 100: 178–184. https://doi.org/10.2307/2484630

Kask K. 1987. Large-fruited black chokeberry (Aronia melanocarpa). Fruit Varieties Journal 41: 47.

Kuzmina M. & Ivanova N. 2011. Primer sets for plants and fungi. Available from:

http://ccdb.ca/site/wp-content/uploads/2016/09/CCDB_PrimerSets-Plants.pdf [accessed 19 Jun. 2019].

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276–3278. https://doi.org/10.1093/bioinformatics/btu531

Leonard P.J. 2011. Aronia mitschurinii: solving a horticultural enigma. MA thesis. Paper 183. University of Connecticut.

Leonard P.J., Brand M.H., Connolly B.A. & Obae S.G. 2013. Investigation of the origin of Aronia mitschurinii using amplified fragment length polymorphism analysis. HortScience 48: 520–524.

https://doi.org/10.21273/HORTSCI.48.5.520

Li Q.Y., Guo W., Liao W.B., Macklin J.A. & Li J.H. 2012. Generic limits of Pyrinae: insights from nuclear ribosomal DNA sequences. Botanical Studies 53: 151–164.

Li M., Ohi-Toma T., Gao Y.D., Xu B., Zhu Z.M., Ju W.B. & Gao X.F. 2017. Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae). Molecular Phylogenetics and Evolution 111: 76–86. https://doi.org/10.1016/j.ympev.2017.03.018

Linnaeus C. 1753. Species Plantarum 1: 477. Holmiae.

Lo E.Y. & Donoghue M.J. 2012. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Molecular Phylogenetics and Evolution 63: 230–243.

https://doi.org/10.1016/j.ympev.2011.10.005

Lo E.Y., Stefanović S. & Dickinson T.A. 2007. Molecular reappraisal of relationships between Crataegus and Mespilus (Rosaceae, Pyreae) – two genera or one? Systematic Botany 32: 596–616.

https://doi.org/10.1600/036364407782250562

Maaten L. van der & Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9: 2579–2605.

Medikus F.K. 1789. Philosophische Botanik mit kritischen Bemerkungen: 140. Mannheim.

Oh S.H. & Potter D. 2003. Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetics and Evolution 29: 203–215. https://doi.org/10.1016/S1055-7903(03)00093-9

Paradis E., Claude J. & Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290. https://doi.org/10.1093/bioinformatics/btg412

Pelser P.B., Gravendeel B. & Meijden R van der. 2003. Phylogeny reconstruction in the gap between too little and too much divergence: the closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Molecular Phylogenetics and Evolution 29: 613–628.

https://doi.org/10.1016/S1055-7903(03)00139-8

Persson Hovmalm H.A., Jeppsson N., Bartish I.V. & Nybom H. 2004. RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas 141: 301–312. https://doi.org/10.1111/j.1601-5223.2004.01772.x

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from http://www.R-project.org/ [accessed 1 Jan. 2018].

Robertson K.R., Phipps J.B., Rohrer J.R. & Smith P.G. 1991. A synopsis of genera in Maloideae (Rosaceae). Systematic Botany 16: 376–394. https://doi.org/10.2307/2419287

Rohlf F.J. 2010. tpsDig. Version 2.16. State University at Stony Brook, N.Y.

Available from http://life.bio.sunysb.edu/morph [accessed 20 Feb. 2014].

Schliep K.P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593.

https://doi.org/10.1093/bioinformatics/btq706

Schneider C.K. 1906. Species varietatesque Pomacearum novae. Repertorium Specierum Novarum Regni Vegetabilis 3: 134.

Scrucca L., Fop M., Murphy T.B. & Raftery A.E. 2016. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal 8: 205–233.

Sennikov A.N. & Phipps J.B. 2013. Atlas Florae Europaeae notes, 19–22. Nomenclatural changes and taxonomic adjustments in some native and introduced species of Malinae (Rosaceae) in Europe. Willdenowia 43: 33–44. https://doi.org/10.3372/wi.43.43104

Shipunov A. & Bateman R. 2005. Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biological Journal of the Linnean Society 85: 1–12.

https://doi.org/10.1111/j.1095-8312.2005.00468.x

Shipunov A., Fay M.F., Pillon Y., Bateman R.M. & Chase M.W. 2004. Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. American Journal of Botany 91: 1419–1427. https://doi.org/10.3732/ajb.91.9.1419

Skvortsov A.K. & Majtulina J.K. 1982. On the diferences of cultivated black-fruited Aronia from its wild ancestors. Bulletin of Main Botanical Garden 126: 35–40. [In Russian.]

Skvortsov A.K., Majtulina J.K. & Gorbunov J.N. 1983. On the place, time and putative way of the cultivated black-fruited Aronia origin. Bulletin of the Moscow Society of Naturalists. Biological Series 88: 88–96. [In Russian.]

Smolik M., Ochmian I. & Smolik B. 2011. RAPD and ISSR methods used for fingerprinting selected, closely related cultivars of Aronia melanocarpa. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 276–284. https://doi.org/10.15835/nbha3926268

Sun J., Shi S., Li J., Yu J., Wang L., Yang X., Guo L. & Zhou S. 2018. Phylogeny of Maleae (Rosaceae) based on multiple chloroplast regions: implications to genera circumscription. BioMed Research International 2018: 7627191. https://doi.org/10.1155/2018/7627191

Taheri R., Connolly B.A., Brand M.H. & Bolling B.W. 2013. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of Agricultural and Food Chemistry 61: 8581–8588. https://doi.org/10.1021/jf402449q

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25 (24): 4876–4882. https://doi.org/10.1093/nar/25.24.4876

Vinogradova Y.K. & Kuklina A.G. 2014. Aronia mitschurinii: from Origination to Naturalization. GEOS, Moscow. [In Russian.]

Volkova P., Kasatskaya S., Boiko A. & Shipunov A. 2011. Stability of leaf form and size during specimen preparation of herbarium specimens. Feddes Repertorium 121: 219–225.

https://doi.org/10.1002/fedr.201000021

Zarrei M., Stefanovic S. & Dickinson T.A. 2014. Reticulate evolution in North American black-fruited hawthorns (Crataegus section Douglasia; Rosaceae): evidence from nuclear ITS2 and plastid sequences. Annals of Botany 114: 253–269. https://doi.org/10.1093/aob/mcu116

Zelditch M.L., Swiderski D.L. & Sheets H.D. 2012. Geometric morphometrics for biologists: a primer. Academic Press.


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/