Mysterious chokeberries: new data on the diversity and phylogeny of Aronia Medik. (Rosaceae)

  • Alexey Shipunov Minot State University, Biology, 500 University Ave, Minot, ND
  • Sofia Gladkova Department of Biology, Moscow State University
  • Polina Timoshina Department of Biology, Moscow State University
  • Hye Ji Lee Minot State University, Biology, 500 University Ave, Minot, ND
  • Jinhee Choi Minot State University, Biology, 500 University Ave, Minot, ND
  • Sarah Despiegelaere Minot State University, Biology, 500 University Ave, Minot, ND
  • Bryan Connolly Framingham State University, Biology, 100 State St, Framingham, MA
Keywords: Aronia, Rosaceae, DNA, morphology, hybridity


Aronia Medik. (chokeberry, Rosaceae) is a genus of woody shrubs with two or three North American species. Species boundaries and relationships between species of Aronia are frequently under question. The only European species in the genus, A. mitschurinii A.K.Skvortsov & Maitul., is suggested to be an inter-generic hybrid. In order to clarify the relationships between species of Aronia, we performed several morphometric and molecular analyses and found that the molecular and morphological diversity within data on American Aronia is low, and species boundaries are mostly not clearly expressed. Whereas morphology is able to separate American species from A. mitschurinii, there is no support for such discrimination from the molecular data; our analyses did not reveal evidence of A. mitschurinii hybrid origin. We believe that higher-resolution markers are needed to resolve species boundaries and putative hybridization events.


Adams D.C. & Otarola-Castillo E. 2013. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4: 393–399.

Brand M.H. 2010. Aronia: native shrubs with untapped potential. Arnoldia 67: 14–25.

Burgess M.B., Cushman K.R., Doucette E.T., Frye C.T. & Campbell C.S. 2015. Understanding diploid diversity: A first step in unraveling polyploid, apomictic complexity in Amelanchier. American Journal of Botany 102: 2041–2057.

Campbell C.S., Evans R.C., Morgan D.R., Dickinson T.A. & Arsenault M.P. 2007. Phylogeny of subtribe Pyrinae (formerly the Maloideae, Rosaceae): limited resolution of a complex evolutionary history. Plant Systematics and Evolution 266: 119–145.

Connolly B.A. 2009. × Sorbaronia fallax (Rosaceae): A new record of an intergeneric hybrid in Connecticut. Rhodora 111: 123–125.

Connolly B.A. 2014. Collection, description, taxonomic relationships, fruit biochemistry, and utilization of Aronia melanocarpa, A. arbutifolia, A. prunifolia, and A. mitschurinii. PhD thesis. Paper 342. University of Connecticut.

Dluzewska J., Slesak I. & Kruk J. 2013. Molecular analysis of Sorbus sp. from the Pieniny Mts. and its relation to other Sorbus species. Acta Biologica Cracoviensia, Series Botanica 55: 86–92.

Guo W., Yu Y., Shen R.J., Liao W.B., Chin S.W. & Potter D. 2011. A phylogeny of Photinia sensu lato (Rosaceae) and related genera based on nrITS and cpDNA analysis. Plant Systematics and Evolution 291: 91–102.

Hardin J.W. 1973. The enigmatic chokeberries. Bulletin of the Torrey Botanical Club 100: 178–184.

Kask K. 1987. Large-fruited black chokeberry (Aronia melanocarpa). Fruit Varieties Journal 41: 47.

Kuzmina M. & Ivanova N. 2011. Primer sets for plants and fungi. Available from: [accessed 19 Jun. 2019].

Larsson A. 2014. AliView: a fast and lightweight alignment viewer and editor for large data sets. Bioinformatics 30: 3276–3278.

Leonard P.J. 2011. Aronia mitschurinii: solving a horticultural enigma. MA thesis. Paper 183. University of Connecticut.

Leonard P.J., Brand M.H., Connolly B.A. & Obae S.G. 2013. Investigation of the origin of Aronia mitschurinii using amplified fragment length polymorphism analysis. HortScience 48: 520–524.

Li Q.Y., Guo W., Liao W.B., Macklin J.A. & Li J.H. 2012. Generic limits of Pyrinae: insights from nuclear ribosomal DNA sequences. Botanical Studies 53: 151–164.

Li M., Ohi-Toma T., Gao Y.D., Xu B., Zhu Z.M., Ju W.B. & Gao X.F. 2017. Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae). Molecular Phylogenetics and Evolution 111: 76–86.

Linnaeus C. 1753. Species Plantarum 1: 477. Holmiae.

Lo E.Y. & Donoghue M.J. 2012. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae, Rosaceae). Molecular Phylogenetics and Evolution 63: 230–243.

Lo E.Y., Stefanović S. & Dickinson T.A. 2007. Molecular reappraisal of relationships between Crataegus and Mespilus (Rosaceae, Pyreae) – two genera or one? Systematic Botany 32: 596–616.

Maaten L. van der & Hinton G. 2008. Visualizing data using t-SNE. Journal of Machine Learning Research 9: 2579–2605.

Medikus F.K. 1789. Philosophische Botanik mit kritischen Bemerkungen: 140. Mannheim.

Oh S.H. & Potter D. 2003. Phylogenetic utility of the second intron of LEAFY in Neillia and Stephanandra (Rosaceae) and implications for the origin of Stephanandra. Molecular Phylogenetics and Evolution 29: 203–215.

Paradis E., Claude J. & Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289–290.

Pelser P.B., Gravendeel B. & Meijden R van der. 2003. Phylogeny reconstruction in the gap between too little and too much divergence: the closest relatives of Senecio jacobaea (Asteraceae) according to DNA sequences and AFLPs. Molecular Phylogenetics and Evolution 29: 613–628.

Persson Hovmalm H.A., Jeppsson N., Bartish I.V. & Nybom H. 2004. RAPD analysis of diploid and tetraploid populations of Aronia points to different reproductive strategies within the genus. Hereditas 141: 301–312.

R Core Team. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from [accessed 1 Jan. 2018].

Robertson K.R., Phipps J.B., Rohrer J.R. & Smith P.G. 1991. A synopsis of genera in Maloideae (Rosaceae). Systematic Botany 16: 376–394.

Rohlf F.J. 2010. tpsDig. Version 2.16. State University at Stony Brook, N.Y.

Available from [accessed 20 Feb. 2014].

Schliep K.P. 2011. phangorn: phylogenetic analysis in R. Bioinformatics 27: 592–593.

Schneider C.K. 1906. Species varietatesque Pomacearum novae. Repertorium Specierum Novarum Regni Vegetabilis 3: 134.

Scrucca L., Fop M., Murphy T.B. & Raftery A.E. 2016. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. The R Journal 8: 205–233.

Sennikov A.N. & Phipps J.B. 2013. Atlas Florae Europaeae notes, 19–22. Nomenclatural changes and taxonomic adjustments in some native and introduced species of Malinae (Rosaceae) in Europe. Willdenowia 43: 33–44.

Shipunov A. & Bateman R. 2005. Geometric morphometrics as a tool for understanding Dactylorhiza (Orchidaceae) diversity in European Russia. Biological Journal of the Linnean Society 85: 1–12.

Shipunov A., Fay M.F., Pillon Y., Bateman R.M. & Chase M.W. 2004. Dactylorhiza (Orchidaceae) in European Russia: combined molecular and morphological analysis. American Journal of Botany 91: 1419–1427.

Skvortsov A.K. & Majtulina J.K. 1982. On the diferences of cultivated black-fruited Aronia from its wild ancestors. Bulletin of Main Botanical Garden 126: 35–40. [In Russian.]

Skvortsov A.K., Majtulina J.K. & Gorbunov J.N. 1983. On the place, time and putative way of the cultivated black-fruited Aronia origin. Bulletin of the Moscow Society of Naturalists. Biological Series 88: 88–96. [In Russian.]

Smolik M., Ochmian I. & Smolik B. 2011. RAPD and ISSR methods used for fingerprinting selected, closely related cultivars of Aronia melanocarpa. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39: 276–284.

Sun J., Shi S., Li J., Yu J., Wang L., Yang X., Guo L. & Zhou S. 2018. Phylogeny of Maleae (Rosaceae) based on multiple chloroplast regions: implications to genera circumscription. BioMed Research International 2018: 7627191.

Taheri R., Connolly B.A., Brand M.H. & Bolling B.W. 2013. Underutilized chokeberry (Aronia melanocarpa, Aronia arbutifolia, Aronia prunifolia) accessions are rich sources of anthocyanins, flavonoids, hydroxycinnamic acids, and proanthocyanidins. Journal of Agricultural and Food Chemistry 61: 8581–8588.

Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F. & Higgins D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25 (24): 4876–4882.

Vinogradova Y.K. & Kuklina A.G. 2014. Aronia mitschurinii: from Origination to Naturalization. GEOS, Moscow. [In Russian.]

Volkova P., Kasatskaya S., Boiko A. & Shipunov A. 2011. Stability of leaf form and size during specimen preparation of herbarium specimens. Feddes Repertorium 121: 219–225.

Zarrei M., Stefanovic S. & Dickinson T.A. 2014. Reticulate evolution in North American black-fruited hawthorns (Crataegus section Douglasia; Rosaceae): evidence from nuclear ITS2 and plastid sequences. Annals of Botany 114: 253–269.

Zelditch M.L., Swiderski D.L. & Sheets H.D. 2012. Geometric morphometrics for biologists: a primer. Academic Press.

How to Cite
Shipunov, A., Gladkova, S., Timoshina, P., Lee, H. J., Choi, J., Despiegelaere, S., & Connolly, B. (2019). Mysterious chokeberries: new data on the diversity and phylogeny of Aronia Medik. (Rosaceae). European Journal of Taxonomy, (570).