Survey of the fruits and endocarps of Icacinaceae (Lamiids, Icacinales)

Cédric Del Rio, Gregory W. Stull, Dario De Franceschi

Abstract


Icacinaceae Miers are a well-described family. However, the family lacks a comprehensive guide to endocarp morphology, which would be an important tool for interpreting the family’s extensive fossil record of endocarp remains. In this survey, we describe fruits and endocarps of 88 species of Icacinaceae s. str., four of Icacinaceae s. lat. (now Metteniusaceae) and one of Oncothecaceae. We investigated the value of the endocarp in species recognition. In addition, we generated an Xper3 database with an associated e-key to increase the availability of raw data and the understanding of the characters used. This study documents great diversity in epicarp hairs, mesocarp thickness, endocarp ornamentation, tubercle shape (if present), endocarp structure and thickness, and the locule lining. Some morphological features appear diagnostic for individual genera. In particular, the genus Iodes Blume, which is very common in the fossil record, is the only clade with the three following characters: papillae on the inner locule lining, ridged ornamentation on the endocarp surface, and a vascular bundle embedded within the endocarp wall. Finally, we discuss issues related to the preservation of fruit material in herbarium collections.

Keywords


E-Key; paleobotany; Iodes; morphoanatomy; monograph

Full Text:

PDF PDF/A


DOI: https://doi.org/10.5852/ejt.2020.645

References


Allen S.E., Stull G.W. & Manchester S.R. 2015. Icacinaceae from the Eocene of western North America. American Journal of Botany 102: 725–44. https://doi.org/10.3732/ajb.1400550

Angulo D.F., De Stefano R.D. & Stull G.W. 2013. Systematics of Mappia (Icacinaceae), an endemic genus of tropical America. Phytotaxa 116 (1): 1–18. https://doi.org/10.11646/phytotaxa.116.1.1

Baillon H.E. 1874. Deuxième étude sur les Mappiées (cont.). Adansonia 11: 187–203.

Boutique R. 1960. Icacinaceae. In: Robyns W. (ed.) Flore du Congo belge et du Ruanda-Urundi: 237–278. INEAC, Bruxelles.

Byng J.W., Bernardini B., Joseph J.A., Chase M.W. & Utteridge T. 2014. Phylogenetic relationships of Icacinaceae focusing on the vining genera. Botanical Journal of the Linnean Society 176 (3): 277–294. https://doi.org/10.1111/boj.12205

Chase M.W. & Hills H.H. 1991. Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40 (2): 215–220. https://doi.org/10.2307/1222975

Collinson M.E., Manchester S.R. & Wilde V. 2012. Fossil Fruit and Seeds of the Middle Eocene Messel Biota, Germany. Abh. Senckenb. Ges. Naturforsch, Stuttgart.

De Roon A.C. 1994. Icacinaceae. In: Görts-Van Rijn A.R.A. (ed.) Flora of the Guianas: 82–109 Koeltz Scientific Books, Koenigstein.

De Roon A.C. 2003. Icacinaceae. In: Buck W.R. (ed.) Guide to the Vascular Plants of Central French Guiana Part 2 Dicotyledone: 358–362. The New York Botanical Garden Press, New York.

Del Rio C. 2018. The Icacinaceae from the Paleogene of the Paris Basin. PhD thesis, Muséum national d’histoire naturelle, France. Available from https://tel.archives-ouvertes.fr/tel-02366974/document [accessed 23 Mar. 2020].

Del Rio C., De Franceschi D. 2020. Fossil record of the Icacinaceae and its paleogeographic implications. Review of Palaeobotany and Palynology 273 (104135): 1–16. https://doi.org/10.1016/j.revpalbo.2019.104135

Del Rio C., Stull G.W. & De Franceschi D. 2019a. New species of Iodes fruits (Icacinaceae) from the early Eocene Le Quesnoy locality, Oise, France. Review of Palaeobotany and Palynology 262: 60–71. https://doi.org/10.1016/j.revpalbo.2018.12.005

Del Rio C., Thomas R. & De Franceschi D. 2019b. Fruits of Icacinaceae Miers from the Palaeocene of the Paris Basin (Oise, France). Earth and Environmental Science Transactions of the Royal Society of Edinburgh 108 (4): 459–469. https://doi.org/10.1017/S1755691018000221

Duno de Stefano R. 2013. Icacinaceae. In: Persson C. & Stahl B. (eds) Flora of Ecuador: 6–43. Herbarium CICY, Mexico.

Ellis B., Daly D.C., Hickey L.J., Mitchell J.D., Johnson K.R., Wilf P., Wing S.L. 2009. Manual of Leaf Architecture. Cornell University Press, Ithaca.

Engler A. 1893. Icacinaceae. In: Engler A. & Prantl K. (eds). 1896. Die natürlichen Pflanzenfamilien. Vol. 3 (5): 233–257, 459–460. Wilhelm Engelmann, Leipzig.

Fay J.M. 1993. Icacina oliviformis (Icacinaceae): A close look at an underexploited food plant. III. Ecology and production. Economic Botany 47 (2): 163–170. https://doi.org/10.1007/BF02862019

Ganesh T. & Davidar P. 2001. Dispersal modes of tree species in the wet forests of southern Western Ghats. Current Science 80 (3): 394–399.

Gaudeul M. & Rouhan G. 2013. A plea for modern botanical collections to include DNA-friendly material. Trends in Plant Science. 18 (4): 184–185. https://doi.org/10.1016/j.tplants.2012.12.006

Heintzelman C.E. & Howard R.A. 1948. The comparative morphology of the Icacinaceae. V. The pubescence and the crystals. American Journal of Botany 35 (1): 42–52. https://doi.org/10.1002/j.1537-2197.1948.tb05186.x

Holmgren P., Holmgren N. & Barnett L. 1990. Index Herbariorum, Part I: The herbaria of the world. New York Botanical Garden, New York.

Howard R.A. 1940. Studies of the Icacinaceae. I. Preliminary taxonomic notes. Journal of the Arnold Arboretum 21: 461–489.

Howard R.A. 1942a. Studies of the Icacinaceae. II. Humirianthera, Leretia, Mappia, and Nothapodytes, valid genera of the Icacineae. Journal of the Arnold Arboretum 23: 55–78. https://doi.org/10.5962/bhl.part.18680

Howard R.A. 1942b. Study of the Icacinaceae IV. Considerations of the new world genera. Harvard University Herbaria 142: 3–60.

Index Herbariorum online. Available from http://sweetgum.nybg.org/science/ih [accessed 16. Mar. 2020].

InsideWood. 2004–onwards. Available from http://insidewood.lib.ncsu.edu/search [accessed 16. Mar. 2020].

Jacques F.M.B. 2009. Survey of the Menispermaceae endocarps. Adansonia 31 (1): 47–87. https://doi.org/10.5252/a2009n1a4

Jansen-Jacobs M.J. 1979. Icacinaceae. In: Stoffers A.L. & Lindeman J.C. (eds) Flora of Suriname. Vol. 5: 344–355. Foundation Van Eedenfonds, Leiden.

Jongkind C.C. & Lachenaud O. 2019. Vadensea (Icacinaceae), a new genus to accommodate continental African species of Desmostachys. Phytotaxa 405 (5): 237–247. https://doi.org/10.11646/phytotaxa.405.5.2

Kårehed J. 2001. Multiple origin of the tropical forest tree family Icacinaceae. American Journal of Botany 88: 2259–2274. https://doi.org/10.2307/3558388

Kerr A.F.G. 1911. Contributions to the flora of Siam. I.: Sketch of the vegetation of Chiengmai. Bulletin of Miscellaneous Information of the Royal Botanic Gardens Kew 1911 (1): 1–60. https://doi.org/10.2307/4119550

Knobloch E. & Mai D.H. 1986. Monographie der Fruchte und Samen in der Kreide von Mitteleuropa. Rozpravy Ústředního ústavu geologického 47, Ústřední ústav geologický, Praha.

Labat J.N., El-Achkar E. & Rabevohitra R. 2006. Révision synoptique du genre Pyrenacantha (Icacinaceae) à Madagascar. Adansonia 28 (2): 389–404. Available from http://sciencepress.mnhn.fr/fr/periodiques/adansonia/28/2/revision-synoptique-du-genre-pyrenacantha-icacinaceae-madagascar [accessed 5 May 2020].

Leaf Architecture Working Group. 1999. Manual of Leaf Architecture: Morphological Description and Categorization of Dicotyledonous and Net-veined Monocotyledonous Angiosperms. Smithsonian Institute, Washington DC.

Manchester S.R. 1994. Fruits and seeds of the Middle Eocene nut beds flora, Clarno Formation, Oregon. Palaeontolographica Americana 58, Paleontological Research Institution, New York.

Peng H. & Howard R.A. 2008. Icacinaceae. In: Zhengyi W. & Raven P.H. (eds) Flora of China: 505–513. Science Press. Beijing / Missouri Botanical Garden. St. Louis.

Perrier de la Bâthie H. 1952. Icacinacées (Icacinaceae). In: Humbert H. (ed.) Flore de Madagascar et des Comores: 119. Firmin-Didot and Cie., Paris.

Potgieter M.J. & van Wyk A.E. 1993. Fruit structure of the genus Cassinopsis Sond. (Icacinaceae) in Africa. South African Journal of Botany 60 (2): 117–122. https://doi.org/10.1016/S0254-6299(16)30642-1

Potgieter M.J. & van Wyk A.E. 1994. Fruit structure of the genus Pyrenacantha Hook. (Icacinaceae) in southern Africa. Botanical Bulletin of Academia Sinica 35: 105–113.

Rasband W.S. 2016. ImageJ website. Available from https://imagej.nih.gov/ij/ [accessed 3 Dec. 2019].

Reid E.M. & Chandler M.E. 1933. The London Clay Flora. The British Museum (Natural History), London. https://doi.org/10.5962/bhl.title.110147

Rouhan G. & Gaudeul M. 2014. Plant taxonomy: a historical perspective, current challenges, and perspectives. In: Besse P. (ed.) Molecular Plant Taxonomy: 1–37. Methods in Molecular Biology 1115, Humana Press, Totowa. https://doi.org/10.1007/978-1-62703-767-9_1

Sarmiento C., Détienne P., Heinz C., Molino J.F., Grard P. & Bonnet P. 2011. Pl@ntWood: a computer-assisted identification tool for 110 species of Amazon trees based on wood anatomical features. IAWA Journal 32 (2): 221–232. https://doi.org/10.1163/22941932-90000053

Sleumer H. 1971. Icacinaceae. In: van Steenis C.G.G.J. (ed.) Flora Malesiana. Vol. 7 (1): 1–87. Noordhoff, Leiden.

Stull G.W., Herrera F., Manchester S.R., Jaramillo C. & Tiffney B.H. 2012. Fruits of an “Old World” tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Systematic Botany 37 (3): 784–794. https://doi.org/10.1600/036364412X648724

Stull G.W., Moore B.R., Manchester S.R., 2011. Fruits of Icacinaceae from the Eocene of southeastern North America and their biogeographic implications. International Journal of Plant Sciences 172 (7): 935–947. https://doi.org/10.1086/660877

Stull G.W., Duno de Stefano R., Soltis D.E. & Soltis P.S. 2015. Resolving basal lamiid phylogeny and the circumscription of Icacinaceae with a plastome-scale data set. American Journal of Botany 102(11): 1794–1813. https://doi.org/10.3732/ajb.1500298

Thomas R. 2011. Palm-ID, a database to identify the palm stem anatomy with an expert system (Xper2). PhD Thesis, Université Paris, France.

Thomas R. & De Franceschi D. 2013. Palm stem anatomy and computer-aided identification: The Coryphoideae (Arecaceae). American Journal of Botany 100 (2): 289–313. https://doi.org/10.3732/ajb.1200242

Tiffney B.H. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Annals of the Missouri Botanical Garden 71 (2): 551–576. https://doi.org/10.2307/2399037

Ung V., Dubus G., Zaragueta-Bagils R. & Vignes-Lebbe R. 2010. Xper2: introducing e-taxonomy. Bioinformatics 26 (5): 703–704. https://doi.org/10.1093/bioinformatics/btp715

Utteridge T.M.A. & Schori M. 2011. Updating Malesian Icacinaceae. Gardens’ Bulletin Singapore 63 (1–2): 105–118.

Villiers J.-F. 1971. Origine et développement de l’accrescence dans les genres Chlamydocarya Baill. et Polycephalium Engl. (Icacinacées). Bulletin de la Société botanique de France 118 (9): 659–666. https://doi.org/10.1080/00378941.1971.10838933

Villiers J.-F. 1973. Icacinaceae. In: Aubréville A. & Leroy J-F. (eds) Flore Du Cameroun: 3–100. Muséum national d’histoire naturelle, Paris.

Wheeler E.A. 2011. InsideWood – A web resource for hardwood anatomy. IAWA Journal 32 (2): 199–211. https://doi.org/10.1163/22941932-90000051

Wheeler E.A., Baas P. & Gasson P.E. 1989. IAWA list of microscopic features for hardwood identi-fication. IAWA Bulletin 10 (3):219–332. https://doi.org/10.1163/22941932-90000496

Zuquim G., Tuomisto H. & Prado J. 2017. A free-access online key to identify Amazonian ferns. PhytoKeys 78: 1–15. https://doi.org/10.3897/phytokeys.78.11370


Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/