A new species of Cryptomonas (Cryptophyceae) from the Western Urals (Russia)

  • Nikita A. Martynenko K.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya Street, Moscow, 127276
  • Evgeniy S. Gusev K.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya Street, Moscow, 127276
  • Pavel V. Kulizin Lobachevsky State University of Nizhniy Novgorod, Gagarina Prosp., 23, 603950 Nizhniy Novgorod
  • Elena E. Guseva K.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya Street, Moscow, 127276
  • Kevin McCartney University of Maine at Presque Isle, Department of Environmental Science and Sustainability, 181 Main Street, Presque Isle, 04769
  • Maxim S. Kulikovskiy K.А. Timiryazev Institute of Plant Physiology RAS, IPP RAS, 35 Botanicheskaya Street, Moscow, 127276
Keywords: Cryptomonas, new species, SSU rDNA, LSU and ITS2 rDNA markers, nuclear ITS2 secondary structure, Compensatory Base Changes approach, Urals

Abstract

A new species, Cryptomonas uralensis Martynenko, Gusev, Kulizin & Guseva sp. nov., is described from western slopes of the Ural Mountains (Russia) based on morphological and molecular data. Phylogenetic relationships inferred from nuclear SSU and LSU rDNA sequences show that the new species forms a clade with C. tetrapyrenoidosa Skuja emend. Hoef-Emden & Melkonian. Comparison of secondary structures of nuclear rDNA ITS2, including analysis of Compensatory Base Changes (CBC), confirms the separation between C. uralensis sp. nov. and C. tetrapyrenoidosa. Cell morphology and sizes of C. uralensis sp. nov. are very similar to C. tetrapyrenoidosa and C. pyrenoidifera, and C. uralensis sp. nov. may thus represent a species that can only be reliably identified using molecular data.

References

Andersen R.A. (ed.) 2005. Algal Culturing Techniques. Elsevier Academic Press, Oxford.

Belyaeva P.G. 2013. Species composition and phytoplankton structure of the Kama reservoir. Bulletin of Perm University. Series: Biology 3: 4–12.

Belyaeva P.G. 2015. Spatio-temporal changes in the phytoplankton of the Kama reservoir Bulletin of the Samara Scientific Center of the Russian Academy of Sciences 17: 733–738.

Caisová L., Marin B., Melkonian M. 2013. A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist 164: 482–496. https://doi.org/10.1016/j.protis.2013.04.005

Choi B., Son M., Jong Im Kim J.I. & Shin W. 2013. Taxonomy and phylogeny of the genus Cryptomonas (Cryptophyceae, Cryptophyta) from Korea. Algae 28: 307–330. https://doi.org/10.4490/algae.2013.28.4.307

Coleman A.W. 2000. The significance of a coincidence between evolutionary landmarks found in mating affinity and a DNA sequence. Protist 151: 1–9. https://doi.org/10.1078/1434-4610-00002

Ehrenberg C.G. 1831. Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Berlin, Mittler.

FigTree 2014. FigTree version 1.3.2. Available from http://tree.bio.ed.ac.uk/software/figtree/ [accessed 20 Apr. 2020].

Hill D.R.A. 1991. A revised circumscription of Cryptomonas (Cryptophyceae) based on examinations of Australian strains. Phycologia 30 (2): 170–188. https://doi.org/10.2216/i0031-8884-30-2-170.1

Hoef-Emden K. 2007. Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia 46 (4): 402–428.

Hoef-Emden K. & Archibald J.M. 2016. Cryptophyta (Cryptomonads). In: Archibald J.M., Simpson A.G.B., Slamovits C.H., Margulis L., Melkonian M., Chapman D.J. & Corliss J.O. (eds) Handbook of the Protists. Springer International Publishing, Cham, Switzerland. https://doi.org/10.1007/978-3-319-28149-0_35

Hoef-Emden K. & Melkonian M. 2003. Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154: 371–409. https://doi.org/10.1078/143446103322454130

Katoh K. & Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26: 1899–1900. https://doi.org/10.1093/bioinformatics/btq224

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Lane C.E. & Archibald J.M. 2008. New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). Journal of Phycology 44 (2): 439–450. https://doi.org/10.1111/j.1529-8817.2008.00486.x

McFadden G.I. & Melkonian M. 1986. Use of Hepes buffer for microalgal culture media and fixation for electron microscopy. Phycologia 25: 551–557. https://doi.org/10.2216/i0031-8884-25-4-551.1

Müller T., Philippi N., Dandekar T., Schultz J. & Wolf M. 2007. Distinguishing species. RNA 13: 1469–1472. https://doi.org/10.1261/rna.617107

Nazarov N.N. 2006. Geography of the Perm region. Part I. Natural (physical) geography. Publishing House of Perm State University, Perm.

Posada D. 2006. Modeltest Server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research 34: 700–703. https://doi.org/10.1093/nar/gkl042

Ronquist F. & Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. https://doi.org/10.1093/bioinformatics/btg180

Shalchian-Tabrizi K., Brate J., Logares R., Klaveness D., Berney C. & Jakobsen K.S. 2008. Diversification of unicellular eukaryotes: Cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environmental Microbiology 10 (10): 2635–2644. https://doi.org/10.1111/j.1462-2920.2008.01685.x

Skuja H. 1948. Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsaliensis 9 (1): 1–399.

Tretyakova S.A. 1989. Phytoplankton of the Kama reservoirs. In: Yarushina M.I. (ed.) Hydrobiological characteristics of the Urals. Ural Branch of USSR Academy of Sciences, Sverdlovsk.

Tretyakova S.A., Golovacheva S.I. & Batova E.M. 1988. Phytoplankton. In: Aleksevnina M.S. (ed.) Biology of the Votkinsk reservoir. Publishing of Irkutsk University, Irkutsk.

Wolf M., Chen S., Song J., Ankenbrand M. & Müller T. 2013. Compensatory Base Changes in ITS2 Secondary Structures Correlate with the Biological Species Concept Despite Intragenomic Variability in ITS2 Sequences – A Proof of Concept. PLoS ONE 8: e66726. https://doi.org/10.1371/journal.pone.0066726

Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research 31: 3406–3415. https://doi.org/10.1093/nar/gkg595

Published
2020-05-20
How to Cite
Martynenko, N. A., Gusev, E. S., Kulizin, P. V., Guseva, E. E., McCartney, K., & Kulikovskiy, M. S. (2020). A new species of Cryptomonas (Cryptophyceae) from the Western Urals (Russia). European Journal of Taxonomy, (649). https://doi.org/10.5852/ejt.2020.649