Phylogenetic and morphological analysis of Gloydius himalayanus (Serpentes, Viperidae, Crotalinae), with the description of a new species
Abstract
Gloydius is a widespread pitviper group occurring from Eastern Europe to Korea and Siberia, with only one known species, G. himalayanus (Günther, 1864), found south of the Himalayas. We provide combined genetic and morphological data for G. himalayanus from specimens collected from Himachal Pradesh, India. Bayesian Inference and Maximum Likelihood phylogenetic analysis were performed on four concatenated mitochondrial genes, along with a multi-locus coalescent analysis of these and five additional nuclear genes. Our results indicate that G. himalayanus from the Chamba Valley, in western Himachal Pradesh, are highly distinct from the remaining studied populations. Haplotype networks of each nuclear locus showed that G. himalayanus contains high haplotype diversity with low haplotype sharing between the Chamba Valley population and populations from further west. Principal component analysis and canonical variate analysis conducted on morphological data of live and museum specimens also highlight the morphological distinctiveness of the Chamba population and we herein describe this population as a new species, Gloydius chambensis sp. nov. Recent descriptions of other new species of snakes from this valley underscores its isolation and suggests that further herpetological investigation of the highly dissected landscapes of the western Himalayas is needed to assess the true diversity of the region.
References
Adlakha V., Patel R.C., Lal N., Mehta Y.P., Jain A.K. & Kumar A. 2013. Tectonics and climate interplay: exhumation patterns of the Dhauladhar Range, northwest Himalaya. Current Science 114 (11): 1551–1559.
Alencar L.R., Quental T.B., Grazziotin F.G., Alfaro M.L., Martins M., Venzon M. & Zaher H. 2016. Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Molecular Phylogenetics & Evolution 105: 50–62. https://doi.org/10.1016/j.ympev.2016.07.029
Ballard J.W.O. & Whitlock M.C. 2004. The incomplete natural history of mitochondria. Molecular Ecology 13 (4): 729–744. https://doi.org/10.1046/j.1365-294X.2003.02063.x
Bandelt H.J., Forster P. & Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology & Evolution 16 (1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Barido-Sottani J., Bošková V., Plessis L.D., Kühnert D., Magnus C., Mitov V., Müller N.F., Pečerska J., Rasmussen D.A., Zhang C. & Drummond A.J. 2018. Taming the BEAST — A community teaching material resource for BEAST 2. Systematic Biology 67 (1): 170–174. https://doi.org/10.1093/sysbio/syx060
Bouckaert R. & Xie D. 2017. BEAST2-Dev/substmodels: standard nucleotide substitution models v1.0.1. https://doi.org/10.5281/zenodo.995740
Boulenger A. 1896. Catalogue of Snakes in the British Museum. Vol. III. Taylor & Francis, London. https://doi.org/10.5962/bhl.title.8316
Brown M.B. & Forsythe A.B. 1974. Robust tests for the equality of variances. Journal of the American Statistical Association 69 (346): 364–367. https://doi.org/10.1080/01621459.1974.10482955
Chaudhuri A., Mukherjee S., Chowdhury S. & Purkayastha J. 2018. Gloydius himalayanus (Himalayan pitviper). Herpetological Review 49 (3): 505.
Chettri B., Bhupathy S. & Acharya B.K. 2011. An overview of the herpetofauna of Sikkim with emphasis on the elevational distribution pattern and threats and conservation issues. In: Arrawatia M.L.& Tambe S. (eds) Biodiversity of Sikkim – Exploring and Conserving a Global Hotspot: 233–254. Information & Public Relations Department, Government of Sikkim, Gangtok.
Copeland P., Harrison T.M., Kidd W.E.A., Ronghua X. & Yuquan Z. 1987. Rapid early Miocene acceleration of uplift in the Gangdese Belt, Xizang (southern Tibet), and its bearing on accommodation mechanisms of the India-Asia collision. Earth & Planetary Science Letters 86 (2–4): 240–252. https://doi.org/10.1016/0012-821X(87)90224-X
Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9 (8): 772. https://doi.org/10.1038/nmeth.2109
Edgar R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5 (1): 1–19. https://doi.org/10.1186/1471-2105-5-113
Edwards S.V. 2009. Is a new and general theory of molecular systematics emerging? Evolution 63 (1): 1–19. https://doi.org/10.1111/j.1558-5646.2008.00549.x
Edwards S.V., Xi Z., Janke A., Faircloth B.C., McCormack J.E., Glenn T.C., Zhong B., Wu S., Lemmon E.M., Lemmon A.R. & Leaché A.D. 2016. Implementing and testing the multispecies coalescent model: a valuable paradigm for phylogenomics. Molecular Phylogenetics & Evolution 94: 447–462. https://doi.org/10.1016/j.ympev.2015.10.027
Folt B., Bauder J., Spear S., Stevenson D., Hoffman M., Oaks J.R., Wood Jr P.L., Jenkins C., Steen D.A. & Guyer C. 2019. Taxonomic and conservation implications of population genetic admixture, mito-nuclear discordance, and male-biased dispersal of a large endangered snake, Drymarchon couperi. PLoS One 14 (3): e0214439. https://doi.org/10.1371/journal.pone.0214439
Fonseca L.H.M. & Lohmann L.G. 2020. Exploring the potential of nuclear and mitochondrial sequencing data generated through genome-skimming for plant phylogenetics: a case study from a clade of neotropical lianas. Journal of Systematics & Evolution 58 (1): 18–32. https://doi.org/10.1111/jse.12533
Galtier N., Nabholz B., Glémin S. & Hurst G.D.D. 2009. Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology 18 (22): 4541–4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x
Garcia E., Wright D., Gatins R., Roberts M.B., Pinheiro H.T., Salas E., Chen J.Y., Winnikoff J.R. & Bernardi G. 2021. Haplotype network branch diversity, a new metric combining genetic and topological diversity to compare the complexity of haplotype networks. PLoS One 16 (6): e0251878. https://doi.org/10.1371/journal.pone.0251878
Ghosh D.K. & Chhibber I.B. 1984. Aid of photointerpretation in the identification of geomorphic and geologic features around Chamba-Dharamsala area, Himachal Pradesh. Journal of the Indian Society of Photo-Interpretation & Remote Sensing 12 (1): 55–64.
Gloyd H.K. & Conant R. 1990. Snakes of the Agkistrodon complex: a monographic review. Contributions to Herpetology 6. Society for the Study of Amphibians & Reptiles, St. Louis.
Grechko V.V. 2013. The problems of molecular phylogenetics with the example of squamate reptiles: mitochondrial DNA markers. Molecular Biology 47 (1): 55–74. https://doi.org/10.1134/S0026893313010056
Guindon S. & Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52 (5): 696–704. https://doi.org/10.1080/10635150390235520
Gumprecht A., Tillack F., Orlov N., Captain A. & Ryabov S. 2004. Asian Pitvipers. Geitje Books, Berlin.
Günther A.C.L.G. 1864. The Reptiles of British India. Hardwicke [Ray Society], London. https://doi.org/10.5962/bhl.title.5012
Hasegawa M., Kishino H. & Yano, T.A. 1985. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution 22 (2): 160–174. https://doi.org/10.1007/BF02101694
Heath T.A. 2015. Divergence time estimation using BEAST v2.2.0. Tutorial written for workshop on applied phylogenetics and molecular evolution, Bodega Bay, California. Available from http://treethinkers.org/tutorials/divergence-time-estimation-using-beast/ [accessed 8 Nov. 2022].
Heled J. & Drummond A.J. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology & Evolution 27 (3): 570–580. https://doi.org/10.1093/molbev/msp274
Hillis D.M. 2019. Species delimitation in herpetology. Journal of Herpetology 53 (1): 3–12. https://doi.org/10.1670/18-123
Hoge A.R. & Romano-Hoge S.A.R.W.D.L. 1981. Poisonous snakes of the world. Part 1. Check list of the pitvipers, Viperoidea, Viperidae, Crotalinae. Memórias do Instituto Butantan 42: 179–310.
Kalyaanamoorthy S., Minh B.Q., Wong T.K., Von Haeseler A. & Jermiin L.S. 2017. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods 14 (6): 587–589. https://doi.org/10.1038/nmeth.4285
Khan M.S. & Tasnim R. 1986. Notes on the Himalayan pitviper, Agkistrodon himalayanus (Günther). Litteratura Serpentium, Ser. English edition 6: 46–55.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16 (2): 111–120. https://doi.org/10.1007/BF01731581
Kimura M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences of the United States of America 78 (1): 454–458. https://doi.org/10.1073/pnas.78.1.454
Koirala B.K., Gurung D.B., Lhendup P. & Phuntsho S. 2016. Species diversity and spatial distribution of snakes in Jigme Dorji National Park and adjoining areas, western Bhutan. Journal of Threatened Taxa 8 (12): 9461–9466. https://doi.org/10.11609/jott.2617.8.12.9461-9466
Kumar S., Stecher G. & Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology & Evolution 33 (7): 1870–1874. https://doi.org/10.1093/molbev/msw054
Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology & Evolution 34 (3): 772–773. https://doi.org/10.1093/molbev/msw260
Lartillot N. & Philippe H. 2004. A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Molecular Biology & Evolution 21 (6): 1095–1109. https://doi.org/10.1093/molbev/msh112
Levene H. 1961. Robust tests for equality of variances. In: Olkin I. (ed.) Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling: 279–292. Stanford University Press, Palo Alto, CA.
Li J.N., Liang D., Wang Y.Y., Guo P., Huang S. & Zhang P. 2020. A large-scale systematic framework of Chinese snakes based on a unified multilocus marker system. Molecular Phylogenetics & Evolution 148: e106807. https://doi.org/10.1016/j.ympev.2020.106807
Malhotra A., Creer S., Pook C.E. & Thorpe R.S. 2010. Inclusion of nuclear intron sequence data helps to identify the Asian sister group of New World pitvipers. Molecular Phylogenetics & Evolution 54 (1): 172–178. https://doi.org/10.1016/j.ympev.2009.09.007
Manhas A. 2020. Observations of Himalayan pitvipers, Gloydius himalayanus (Günther, 1864), in the Doda District, Jammu and Kashmir, India. Reptiles & Amphibians 27 (3): 476–478. https://doi.org/10.17161/randa.v27i3
Marshall T.L., Chambers E.A., Matz M.V. & Hillis D.M. 2021. How mitonuclear discordance and geographic variation have confounded species boundaries in a widely studied snake. Molecular Phylogenetics & Evolution 162: e107194. https://doi.org/10.1016/j.ympev.2021.107194
McDiarmid R.W., Campbell J.A. & Touré T. 1999. Snake Species of the World: A Taxonomic and Geographic Reference. Vol. 1. Herpetologists' League, Washington, D.C.
Mebert K. 2008. Good species despite massive hybridization: genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Molecular Ecology 17 (8): 1918–1929. https://doi.org/10.1111/j.1365-294X.2008.03725.x
Minh B.Q., Nguyen M.A.T. & von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology & Evolution 30 (5): 1188–1195. https://doi.org/10.1093/molbev/mst024
Nesi N., Nakoune E., Cruaud C. & Hassanin A. 2011. DNA barcoding of African fruit bats (Mammalia, Pteropodidae). The mitochondrial genome does not provide a reliable discrimination between Epomophorus gambianus and Micropteropus pusillus. Comptes Rendus Biologies 334 (7): 544–554. https://doi.org/10.1016/j.crvi.2011.05.003
Nguyen L.T., Schmidt H.A., Von Haeseler A. & Minh B.Q. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology & Evolution 32 (1): 268–274. https://doi.org/10.1093/molbev/msu300
Orlov N.L. & Barabanov A.V. 2000. About type localities for some species of the genus Gloydius Hoge et Romano-Hoge, 1981 (Crotalinae: Viperidae: Serpentes). Russian Journal of Herpetology 7 (2): 159–160.
Posada D. 2003. Using MODELTEST and PAUP* to select a model of nucleotide substitution. Current Protocols in Bioinformatics 1: 6-5. https://doi.org/10.1002/0471250953.bi0605s00
Qiagen 2020. DNeasy Blood & Tissue Handbook. Available from https://www.qiagen.com/ [accessed 27 Oct. 2022].
R Core Team 2020. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available from https://www.R-project.org/ [accessed 27 Oct. 2022].
Raina S., Raina S., Kaul R., Chander V. & Jaryal A. 2014. Snakebite profile from a medical college in rural setting in the hills of Himachal Pradesh, India. Indian Journal of Critical Care Medicine 18 (3): 134–138. https://doi.org/10.4103/0972-5229.128702
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61 (3): 539–542. https://doi.org/10.1093/sysbio/sys029
Rowley D.B., Pierrehumbert R.T. & Currie B.S. 2001. A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth & Planetary Science Letters 188 (1–2): 253–268. https://doi.org/10.1016/S0012-821X(01)00324-7
Rozas J., Ferrer-Mata A., Sánchez-DelBarrio J.C., Guirao-Rico S., Librado P., Ramos-Onsins S.E. & Sánchez-Gracia A. 2017. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology & Evolution 34 (12): 3299–3302. https://doi.org/10.1093/molbev/msx248
Shi J., Wang G., Fang Y., Ding L., Huang S., Hou M., Liu J. & Li P. 2017. A new moth-preying alpine pitviper species from Qinghai-Tibetan Plateau (Viperidae, Crotalinae). Amphibia-Reptilia 38 (4): 517–532. https://doi.org/10.1163/15685381-00003134
Shi J., Yang D., Zhang W., Peng L., Orlov N.L., Jiang F., Ding L., Hou M., Huang X., Huang S. & Li P. 2018. A new species of the Gloydius strauchi complex (Crotalinae: Viperidae: Serpentes) from Qinghai, Sichuan, and Gansu, China. Russian Journal of Herpetology 25 (2): 126–138. https://doi.org/10.30906/1026-2296-2018-25-2-126-138
Shi J.S., Liu J.C., Giri R., Owens J.B., Santra V., Kuttalam S., Selvan M., Guo K.J. & Malhotra A. 2021. Molecular phylogenetic analysis of the genus Gloydius (Squamata, Viperidae, Crotalinae), with description of two new alpine species from Qinghai-Tibet Plateau, China. ZooKeys 1061: 87–108. https://doi.org/10.3897/zookeys.1061.70420
Smith M.A. 1943. The Fauna of British India, Ceylon and Burma, Including the Whole of the Indo-Chinese Sub-region. Reptilia & Amphibia. Vol. III. Serpentes. Taylor and Francis, London.
Tamura K. & Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology & Evolution 10 (3): 512–526.https://doi.org/10.1093/oxfordjournals.molbev.a040023
Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17 (2): 57–86.
Thiede R., Robert X., Stübner K., Dey S. & Faruhn J. 2017. Sustained out-of-sequence shortening along a tectonically active segment of the Main Boundary thrust: the Dhauladhar Range in the northwestern Himalaya. Lithosphere 9 (5): 715–725. https://doi.org/10.1130/L630E.1
Toews D.P. & Brelsford A. 2012. The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology 21 (16): 3907–3930. https://doi.org/10.1111/j.1365-294X.2012.05664.x
Underwood G. 1999. Morphological evidence on the affinities of vipers. In: Joger U. (ed.) Phylogeny and Systematics of the Viperidae. Kaupia, Darmstädter Beiträge zur Naturgeschichte 8: 3–8.
Wagner P., Tiutenko A., Mazepa G., Borkin L.J. & Simonov E. 2016. Alai! Alai! – a new species of the Gloydius halys (Pallas, 1776) complex (Viperidae, Crotalinae), including a brief review of the complex. Amphibia-Reptilia 37 (1): 15–31. https://doi.org/10.1163/15685381-00003026
Wall F. 1910. A popular treatise on the common Indian snakes. Part XIII. Journal of the Bombay Natural History Society 20: 65–79.
Wallach V., Williams K.L. & Boundy J. 2014. Snakes of the World: A Catalogue of Living and Extinct Species. Taylor and Francis, CRC Press, Boca Raton, FL, USA.
Wan Q.H., Wu H., Fujihara T. & Fang S.G. 2004. Which genetic marker for which conservation genetics issue? Electrophoresis 25 (14): 2165–2176. https://doi.org/10.1002/elps.200305922
Wang K., Ren J., Dong W., Jiang K., Shi J., Siler C.D. & Che J. 2019. A new species of Plateau Pit Viper (Reptilia: Serpentes: Gloydius) from the Upper Lancang (= Mekong) Valley in the Hengduan Mountain Region, Tibet, China. Journal of Herpetology 53 (3): 224–236. https://doi.org/10.1670/18-126
Wang X., Zhang J., Liu J., Yan S. & Wang J. 2013. Middle-Miocene transformation of tectonic regime in the Himalayan orogen. Chinese Science Bulletin 58 (1): 108–117. https://doi.org/10.1007/s11434-012-5414-6
Warren D.L., Geneva A.J. & Lanfear R. 2017. RWTY (R We There Yet): an R package for examining convergence of Bayesian phylogenetic analyses. Molecular Biology & Evolution 34 (4): 1016–1020. https://doi.org/10.1093/molbev/msw279
Whitaker R. & Captain A. 2004. Snakes of India. Draco Books, Chengalpattu, Tamil Nadu, India.
Xu Y., Liu Q., Myers E.A., Wang L., Huang S., He Y., Peng P. & Guo P. 2012. Molecular phylogeny of the genus Gloydius (Serpentes: Crotalinae). Asian Herpetological Research 3: 127–132. https://doi.org/10.3724/SP.J.1245.2012.00127
Copyright (c) 2022 Sourish Kuttalam, Vishal Santra, John Benjamin Owens, Melvin Selvan, Nilanjan Mukherjee, Stuart Graham, Anatoli Togridou, Omesh K. Bharti, Jingsong Shi, Kartik Shanker, Anita Malhotra
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.