On the origin and diversification of the stygobiotic freshwater snail genus Hauffenia (Caenogastropoda: Hydrobiidae) with special focus on the northern species and the description of two new species

Keywords: DNA taxonomy, groundwater, Miocene, Pannonian Sea, rhizosphere


During systematic surveys of groundwater snails in Slovakia, Hungary and Bosnia and Hercegovina two new species of the genus Hauffenia, H. lozekiana sp. nov. from a single locality in Slovakia, and H. steffeki sp. nov. with a small range in Bosnia and Hercegovina were discovered and are here described based on shell morphology, anatomy and DNA sequence data (COI, 16S rRNA, ITS2). The discovery of H. steffeki sp. nov. extends the range of the genus considerably towards the south. Hauffenia lozekiana sp. nov. appears to be a relict surviving within the range of the today widely distributed H. kissdalmae. Based on a time tree, we developed a scenario for the origin and diversification of the genus. The ancestor probably evolved in the Miocene on the Balkans and with the gradual desiccation of the Paratethys and its remnant water bodies diversified towards the north. Karstic and in particular alluvial connectivities together with changing courses of paleo-rivers probably played an important role for dispersal. Ecological observations suggest that the phreatic rhizosphere, the delicate net of tree rootlets and their exudates, are important for the existence of these groundwater snails.


Angelov A. 1967. Horatia (Hauffenia) lucidulus n. sp., ein neuer Vertreter der Molluskenfauna Bulgariens. Archiv für Molluskenkunde 96: 145–148.

Anistratenko O.Y. & Anistratenko V.V. 2009. A problem of taxonomy of Maeotian gastropod mollusks “Skeneopsis planorbis”. Collection of scientific works of the Institute of Geological Sciences of the NAS of Ukraine 2: 351–353, 494–495. https://doi.org/10.30836/igs.2522-9753.2009.148138

Badri D.V. & Vivanco J.M. 2009. Regulation and function of root exudates. Plant, Cell & Environment 32: 666–681. https://doi.org/10.1111/j.1365-3040.2009.01926.x

Bandel K. 2010. Valvatiform gastropoda (Heterostropha and Caenogastropoda) from the Paratethys Basin compared to living relatives, with description of several new genera and species. Freiberger Forschungshefte C 536, Paläontologie, Stratigraphie, Fazies 18: 91–155.

Barco A., Raupach M.J., Laakmann S., Neumann H. & Knebelsberger T. 2016. Identification of North Sea molluscs with DNA barcoding. Molecular Ecology Resources 16: 288–297. https://doi.org/10.1111/1755-0998.12440

Bodon M., Manganelli G. & Giusti F. 2001. A survey of the European valvatiform hydrobiid genera, with special reference to Hauffenia Pollonera, 1898 (Gastropoda: Hydrobiidae). Malacologia 43: 103–215.

Bole J. 1970. Prispevek k poznavanju anatomije in taksonomije podzemeljskih hidrobiid (Gastropoda, Prosobranchia). Razprave IV. Razreda SAZU 13: 85–111.

Bole J. & Velkovrh F. 1987. Nove vrste podzemeljskih polzev Jugolsavije. Razprave IV. Razreda SAZU 28: 69–83.

Borsy Z. 1989. Az Alföld hordalékkúpjainak negyedidőszaki fejlődéstörténete. Földrajzi Értesítő 38 (3–4): 211–224.

Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchêne S., Fourment M., Gavryushkina A., Heled J., Jones G., Kühnert D., De Maio N., Matschiner M., Mendes F.K., Müller N.F., Ogilvie H.A., du Plessis L., Popinga A., Rambaut A., Rasmussen D., Siveroni I., Suchard M.A., Wu C.-H., Xie D., Zhang C., Stadler T. & Drummond A.J., 2019. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology 15: e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Čiliak M. & Šteffek J. 2013. Faunisticky významné druhy mäkkýšov z náplavov rieky Hron. Folia faunistica Slovaca 18: 81–89.

Clark S., Miller A. & Ponder W.F. 2003. Revision of the snail genus Austropyrgus (Gastropoda, Hydrobiidae): a morphostatic radiation of freshwater gastropods in southeastern Australia. Records of the Australian Museum, Supplement 28: 1–109. https://doi.org/10.3853/j.0812-7387.28.2003.1377

Clement M., Snell Q., Walke P., Posada D. & Crandall K. 2002. TCS: estimating gene genealogies. Proceedings of the 16th International Parallel Distribution Processes Symposium 2: 184. https://doi.org/10.1109/IPDPS.2002.1016585

Darriba D., Taboada G.L., Doallo R. & Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9: 772. https://doi.org/10.1038/nmeth.2109

Davis G.M. 1979. The origin and evolution of the gastropod family Pomatiopsidae, with emphasis on the Mekong River Triculinae. Monographs of the Academy of Natural Sciences of Philadelphia 20: 1–120.

Delicado D., Arconada B., Aguado A. & Ramos M.A. 2019. Multilocus phylogeny, species delimitation and biogeography of Iberian valvatiform springsnails (Caenogastropoda: Hydrobiidae), with the description of a new genus. Zoological Journal of the Linnean Society 186: 892–914. https://doi.org/10.1093/zoolinnean/zly093

Delicado D., Pešić V. & Ramos M.A. 2021. Arganiella Giusti & Pezzoli, 1980 (Caenogastropoda: Truncatelloidea: Hydrobiidae): a widespread genus or several narrow-range endemic genera? European Journal of Taxonomy 750: 140–155. https://doi.org/10.5852/ejt.2021.750.1369

Drummond A.J., Ho S.Y.W., Philips M.J. & Rambaut A. 2007. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88. https://doi.org/10.1371/journal.pbio.0040088

Erőss Z.P. & Petró E. 2008. A new species of the valvatiform hyrobiid genus Hauffenia from Hungary (Mollusca: Caenogastropoda: Hydrobiidae). Acta Zoologica Academiae Scientiarum Hungaricae 54: 159–167.

Falniowski A. & Szarowska M. 2015. Species distinctness of Hauffenia michleri (Kuščer, 1931) (Caenogastropoda: Truncatelloidea: Hydrobiidae). Folia Malacologica 23: 193–195. https://doi.org/10.12657/folmal.023.016

Gábris G. 1994. Pleistocene evolution of the Danube in the Carpathian Basin. Terra Nova 6: 495–501. https://doi.org/10.1111/j.1365-3121.1994.tb00893.x

Georgiev D. 2013. Localities of valvatiform hydrobiids (Gastropoda: Hydrobiidae) in Bulgaria. ZooNotes 43: 1–4.

Gittenberger E., Piel. W.H. & Groenenberg D.S.J. 2004. The Pleistocene glaciations and the evolutionary history of the polytypic snail species Arianta arbustorum (Gastropoda, Pulmonata, Helicidae). Molecular Phylogenetics and Evolution 30: 64–73. https://doi.org/10.1016/S1055-7903(03)00182-9

Glöer P. & Grego J. 2015. New subterranean freshwater molluscs from Bosnia & Hercegovina (Mollusca: Hydrobiidae). Ecologica Montenegrina 2: 307–314. https://doi.org/10.37828/em.2015.2.37

Grego J. in press. Chapter 4: Mollusca. In: Wynne J. (ed.) Diversity and Speciation of Subterranean Fauna. Johns Hopkins University Press, Baltimore, Maryland, USA.

Grego J. & Šteffek J. 2010. Ulitníky podzemného druhu Hauffenia sp. vo vyvieračkách Plešiveckej planiny. In: Stankovič J., Cílek V. & Schmelzová R. (eds) Plešivecká planina: 150–152. Slovenská Speleologická Spoločnosť, Liptovský Mikuláš.

Grego J., Glöer P., Erőss Z.P. & Fehér Z. 2017. Six new subterranean freshwater gastropod species from northern Albania and some new records from Albania and Kosovo (Mollusca, Gastropoda, Moitessieriidae and Hydrobiidae). Subterranean Biology 23: 85–107. https://doi.org/10.3897/subtbiol.23.14930

Haase M. 1992. A new, stygobiont, valvatiform, hydrobiid gastropod from Austria (Caenogastropoda: Hydrobiidae). Journal of Molluscan Studies 58: 207–214. https://doi.org/10.1093/mollus/58.2.207

Haase M. 1993. Hauffenia kerschneri (Zimmermann 1930): zwei Arten zweier Gattungen (Caenogastropoda: Hydrobiidae). Archiv für Molluskenkunde 121: 91–109. https://doi.org/10.1127/arch.moll/121/1992/91

Haase M. 2008. The radiation of hydrobiid gastropods in New Zealand: a revision including the description of new species based on morphology and mtDNA sequence information. Systematics and Biodiversity 6: 99–159. https://doi.org/10.1017/S1477200007002630

Haase M., Misof B., Wirth T., Baminger H. & Baur B. 2003. Mitochondrial differentiation in a polymorphic land snail: evidence for Pleistocene survival within the boundaries of permafrost. Journal of Evolutionary Biology 16: 415–428. https://doi.org/10.1046/j.1420-9101.2003.00542.x

Haase M., Marshall B.A. & Hogg I. 2007. Disentangling causes of disjunction on the South Island of New Zealand: the Alpine fault hypothesis of vicariance revisited. Biological Journal of the Linnean Society 91: 361–374. https://doi.org/10.1111/j.1095-8312.2007.00801.x

Haase M., Meng S. & Horsák M. 2021. Tracking parallel adaptation of shell morphology through geological times in the land snail genus Pupilla (Gastropoda: Stylommatophora: Pupillidae). Zoological Journal of the Linnean Society 191: 720–747. https://doi.org/10.1093/zoolinnean/zlaa057

Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Harzhauser M., Neubauer T.A., Gross M. & Binder H. 2014. The early Middle Miocene mollusc fauna of Lake Rein (Eastern Alps, Austria). Palaeontographica, Abteilung A: Palaeozoology – Stratigraphy 302: 1–71. https://doi.org/10.1127/pala/302/2013/1

Hershler R. & Ponder W.F. 1998. A review of morphological characters of hydrobioid snails. Smithsonian Contributions to Zoology 600: 1–55. https://doi.org/10.5479/si.00810282.600

IUCN Standards and Petitions Committee. 2019. Guidelines for Using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Committee. Available from http://www.iucnredlist.org/documents/RedListGuidelines.pdf [accessed 12 Jun. 2021].

Ivančič K., Trajanova M., Coric S., Rožič B. & Šmuc A. 2018. Miocene paleogeography and biostratigraphy of the Slovenj Gradec Basin: a marine corridor between the Mediterranean and Central Paratethys. Geologica Carpathica 69: 528–544. https://doi.org/10.1515/geoca-2018-0031

Jasinska E., Knott B. & McComb A.J. 1996. Root mats in ground water: a fauna-rich cave habitat. Journal of the North American Benthological Society 15: 508–519. https://doi.org/10.2307/1467802

Karátson D. 2014. Két vulkáni hegység között: a Dunakanyar kialakulása. In: Fésű J. & Hála G. (eds) Börzsönyidék 5: A Börzsöny erdői és vizei: 205–218. SzobEditors, A Börzsöny Múzeum Baráti Köre.

Katoh K., Rozewicki J. & Yamada K.D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20: 1160–1166. https://doi.org/10.1093/bib/bbx108

Kázmér M. 1990. Birth, life and death of the Pannonian Lake. Palaeogeography, Palaeoclimatology, Palaeoecology 79: 171–188. https://doi.org/10.1016/0031-0182(90)90111-J

Kerney M.P. & Cameron R.A.D. 1979. Field Guide to the Land Snails of Britain and North-West Europe. Collins, London.

Krijgsman W., Hilgen F.J., Raffi I., Sierro F.J. & Wilson D.S. 1999. Chronology, causes and progression of the Messinian salinity crisis. Nature 400: 652–655. https://doi.org/10.1038/23231

Kühn A.L. & Haase M. 2020. QUIDDICH – QUick IDentification of DIagnostic CHaracters. Journal of Zoological Systematics and Evolutionary Research 58: 22–26. https://doi.org/10.1111/jzs.12347

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Lanfear R., Calcott B., Ho S.Y.W. & Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analysis. Molecular Biology and Evolution 29: 1659–1701. https://doi.org/10.1093/molbev/mss020

Leigh J.W. & Bryant D. 2015. PopART: Full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410

Ložek V. & Galvánek J. 1987. Geologická poloha a biostratigrafický rozbor chráneného prírodného výtvoru Mičinské travertíny. Ochrana prírody 8: 221–240.

Magyar I., Geary D. H. & Müller P. 1999. Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeography, Palaeoclimatology, Palaeoecology 147: 151–167. https://doi.org/10.1016/S0031-0182(98)00155-2

Mezősi G. 2015. Magyarország Természetföldrajza. Akadémiai Kiadó, Budapest. https://doi.org/10.1556/9789630589765

Mike K. 1991. Magyarország ősvízrajza és felszíni vizeinek története. Aqua, Budapest.

Mitterová B. 1986. Čo ohrozuje Slovenský kras? Vesmír 65: 317–323.

Minh B.Q., Nguyen M.A. & von Haeseler A. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188–1195. https://doi.org/10.1093/molbev/mst024

MolluscaBase. 2021. Hauffenia Pollonera, 1898. Available from https://molluscabase.org/aphia.php?p=taxdetails&id=716229 [accessed 12 Jun. 2021].

Nation J.L. 1983. A new method using hexamethyldisilazane for preparation of soft insect tissues for scanning electron microscopy. Stain Technology 58: 347–351. https://doi.org/10.3109/10520298309066811

Nekola J.C., Coles B. & Horsák M. 2015. Species assignment in Pupilla (Gastropoda: Pulmonata: Pupillidae): integration of DNA-sequence data and conchology. Journal of Molluscan Studies 81: 196–216. https://doi.org/10.1093/mollus/eyu083

Palumbi S.R., Martin A., Romano S., McMillan W.O., Stice L. & Gabowski G. 1991. The Simple Fool’s Guide to PCR. Department of Zoology and Kewalo Marine Laboratory, University of Hawaii, Honolulu.

Papp A. 1954. Die Molluskenfauna im Sarmat des Wiener Beckens. Mitteilungen der Geologischen Gesellschaft Wien 45: 1–112.

Ponder W.F., Wilke T., Zhang W.-H., Golding R.E., Fukuda H. & Mason R.A.B. 2008. Edgbastonia alanwillsi n. gen. & n. sp. (Tateinae: Hydrobiidae s.l.: Rissooidea: Caenogastropoda); a snail from an artesian spring group in western Queensland, Australia, convergent with some Asian Amnicolidae. Molluscan Research 28: 89–106.

Rambaut A., Drummond A.J., Xie D., Baele G. & Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67: 901–904. https://doi.org/10.1093/sysbio/syy032

Reischütz A. 2000. Die Molluskenfauna der Sarmatschichten von Hautzendorf (Weinviertel, Niederösterreich). Nachrichtenblatt der Ersten Vorarlberger Malakologischen Gesellschaft 8: 21–27.

Reichütz A. & Reischütz P. 2006. Beiträge zur Molluskenfauna Niederösterreichs XVII. Zwei interessante Hydrobiidae aus Niederösterreich. Heldia 6: 17–18.

Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A. & Huelsenbeck J.P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029

Rundić L., Vasić N., Životić D., Bechtel A., Knežević S. & Cvetkov V. 2016. The Pliocene Paludina Lake of Pannonian Basin: new evidence from northern Serbia. Annales Societatis Geologorum Poloniae 86: 185–209. https://doi.org/10.14241/asgp.2016.003

Rysiewska A., Prevorčnik S., Osikowski A., Hofman S., Beran L. & Falniowski A. 2017. Phylogenetic relationships in Kerkia and introgression between Hauffenia and Kerkia (Caenogastropoda: Hydrobiidae). Journal of Zoological Systematics and Evolutionary Research 55: 106–117. https://doi.org/10.1111/jzs.12159

Schütt H. 1961. Weitere neue Süßwasser-Höhlenschnecken aus Dalmatien. Archiv für Molluskenkunde 90: 139–144.

Somogyi S. 1961. Drainage pattern evolution of Hungary. Földrajzi Közlemények 9: 25–50.

Sümeghy J. 1955. A magyarországi pleisztocén összefoglaló ismertetése. Annual Report of the Geological Institute of Hungary 2: 395–403.

Šimon, L. 2000. Volcanic structure of the youngest volcano in the Western Carpathians - the Putikov vršok volcano. Mineralia Slovaca 32: 241–242

Šteffek J. & Grego J. 2002. True mollusc troglobite in Slovak Karst. Slovenský Kras 40: 175–176.

Šteffek J. & Grego J. 2008. The current status of the genus cf. Hauffenia (Mollusca: Gastropoda: Hydrobiidae) distribution in Slovakian Karst. Slovenský Kras 46: 387–392.

Šteffek J., Falniowski A., Szarowska M. & Grego J. 2011. “Hauffenia” Pollonera, 1898 (Caenogastropoda: Hydrobiidae) in Slovakia: a preliminary report. Folia Malacologica 19: 1–7. https://doi.org/10.2478/v10125-011-0006-7

Thompson J.D., Higgins D.G. & Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. https://doi.org/10.1093/nar/22.22.4673

Trifinopoulos J., Nguyen L.-T., von Haeseler A. & Minh B.Q. 2016. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research 44: W232–W235. https://doi.org/10.1093/nar/gkw256

Uhrin A. 2011. Vízszintváltozási ciklusok és kialakulásuk okai a késő-miocén Pannon-tó egyes részmedencéiben. PhD thesis, Földrajz-És Földtudományi Intézet Általános És Alkalmazott Földtani Tanszék, Budapest.

Verhaegen G., McElroy K.E., Bankers L., Neiman M. & Haase M. 2018. Adaptive phenotypic plasticity in a clonal invader. Ecology and Evolution 8: 4465–4483. https://doi.org/10.1002/ece3.4009

Wade C.M. & Mordan P.B. 2000. Evolution within the gastropod molluscs; using the ribosomal RNA gene-cluster as an indicator of phylogenetic relationships. Journal of Molluscan Studies 66: 565–570. https://doi.org/10.1093/mollus/66.4.565

Wilke T. 2003. Salenthydrobia gen. nov. (Rissooidea: Hydrobiidae): a potential relict of the Messinian salinity crisis. Zoological Journal of the Linnean Society 137: 319–336. https://doi.org/10.1046/j.1096-3642.2003.00049.x

Wilke T. & Davis G.M. 2000. Infraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissooidea: Gastropoda): do their different life histories affect biogeographic patterns and gene flow? Biological Journal of the Linnean Society 70: 89–105. https://doi.org/10.1111/j.1095-8312.2000.tb00202.x

Wilke T., Davis G.M., Falniowski A., Giusti F., Bodon M. & Szarowska M. 2000. Molecular systematics of Hydrobiidae (Mollusca: Gastropoda: Rissooidea): testing monophyly and phylogenetic relationships. Proceedings of the Academy of Natural Sciences of Philadelphia 151: 1–21. https://doi.org/10.1635/0097-3157(2001)151[0001:MSOHMG]2.0.CO;2

Xia X. 2018. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Molecular Biology and Evolution 35: 1550–1552. https://doi.org/10.1093/molbev/msy073

Xia X., Xie Z., Salemi M., Chen L. & Wang Y. 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3

Zielske S. & Haase M. 2015. Molecular phylogeny and a modified approach of character-based barcoding refining the taxonomy of New Caledonian freshwater gastropods (Caenogastropoda, Truncatelloidea, Tateidae). Molecular Phylogenetics and Evolution 89: 171–181. https://doi.org/10.1016/j.ympev.2015.04.020

How to Cite
Haase, M., Grego, J., Erőss, Z. P., Farkas, R., & Fehér, Z. (2021). On the origin and diversification of the stygobiotic freshwater snail genus Hauffenia (Caenogastropoda: Hydrobiidae) with special focus on the northern species and the description of two new species. European Journal of Taxonomy, 775(1), 143–184. https://doi.org/10.5852/ejt.2021.775.1555
Research article