Disentangling the identity of Lebertia porosa Thor, 1900 using integrative taxonomy (Acari: Hydrachnidia)

  • Valentina Tyukosova Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
  • Reinhard Gerecke University of Tübingen, Faculty of Science, Department of Evolution and Ecology, DE-72074 Tübingen, Germany
  • Elisabeth Stur Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
  • Torbjørn Ekrem Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
Keywords: cryptic species, species delimitation, Wolbachia, nomenclature

Abstract

Initial analyses of DNA barcode data from Norwegian populations attributed to the water mite Lebertia porosa Thor, 1900 revealed large genetic divergence and potentially cryptic species-level diversity. We used one mitochondrial (COI) and two nuclear markers (18S and 28S) as well as comparative morphological analysis to redefine Lebertia porosa, and to further investigate the species boundaries of Norwegian populations of its close relatives. Our results show that Lebertia porosa, as currently defined, consists of multiple species that can be separated by molecular and morphological characteristics. Although we document the presence of the endosymbiotic bacteria Wolbachia in two out of eight screened genetic lineages, we find no evidence of intraspecific genetic divergence caused by Wolbachia infections. The assignment of one of the genetic lineages to the nominal species could be made through morphological comparisons of specimens from the L. porosa type locality with the syntypes of L. obscura Thor, 1900. Thus, the diagnosis of L. porosa is emended and a neotype is defined. Two of the remaining genetic lineages could be assigned to existing names previously regarded as junior synonyms of L. porosa, namely L. obscura (lectotype defined here) and L. gibbosa Lundblad, 1926, which are both redescribed. The outstanding genetic lineages are unnamed, but from our work we conclude that the taxa Lebertia porosa britannica Thor, 1906, L. porosa dorsalis Thor, 1906, and L. porosa italica Thor, 1906 are nomina dubia that cannot be considered junior synonyms of L. porosa as proposed by K. Viets (1956). We also consider L. vigintimaculata Thor, 1900 a nomen dubium, probably identical to L. obscura.

References

Anderson A.M., Stur E. & Ekrem T. 2013. Molecular and morphological methods reveal cryptic diversity and three new species of Nearctic Micropsectra (Diptera: Chironomidae). Freshwater Science 32: 892– 921. https://doi.org/10.1899/12-026.1

Besseling A.J. 1958. Notes sur des hydrachnelles provenant du Grand-Fuché de Luxembourg. Institut Grand-Ducal de Luxembourg, Archives des Sciences naturelles, physiques et mathématiques (New Series) 25: 219–226.

Blattner L., Gerecke R. & von Fumetti S. 2019. Hidden biodiversity revealed by integrated morphology and genetic species delimitation of spring dwelling water mite species (Acari, Parasitengona: Hydrachnidia). Parasites & Vectors 12: e492. https://doi.org/10.1186/s13071-019-3750-y

Breeuwer J.A.J. & Jacobs G. 1996. Wolbachia: intracellular manipulators of mite reproduction. Experimental & Applied Acarology 20: 421–434. https://doi.org/10.1007/BF00053306

Brown A.N. & Lloyd V.K. 2015. Evidence for horizontal transfer of Wolbachia by a Drosophila mite. Experimental and Applied Acarology 66: 301–311. https://doi.org/10.1007/s10493-015-9918-z

Camacho C., Coulouris G., Avagyan V., Ma N., Papadopoulos J., Bealer K. & Madden T.L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10: e421. https://doi.org/10.1186/1471-2105-10-421

Camargo A., Morando M., Avila L.J. & Sites J.W. Jr. 2012. Species delimitation with ABC and other coalescent-based methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Evolution 66: 2834–2849. https://doi.org/10.1111/j.1558-5646.2012.01640.x

Carstens B.C., Pelletier T.A., Reid N.M. & Satler J.D. 2013. How to fail at species delimitation. Molecular Ecology 22: 4369–4383. https://doi.org/10.1111/mec.12413

Clement M., Posada D. & Crandall K.A. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x

Cook D.R. 1974. Water mite genera and subgenera. Memoirs of the American Entomological Institute 21: 1–860.

Cordaux R., Michel-Salzat A. & Bouchon D. 2001. Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmission. Journal of Evolutionary Biology 14: 237–243. https://doi.org/10.1046/j.1420-9101.2001.00279.x

Dabert M., Witalinski W., Kazmierski A., Olszanowski Z. & Dabert J. 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and long-branch attraction artifacts. Molecular Phylogenetics and Evolution 56: 222–241. https://doi.org/10.1016/j.ympev.2009.12.020

Dabert M., Proctor H. & Dabert J. 2016. Higher-level molecular phylogeny of the water mites (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae). Molecular Phylogenetics and Evolution 101: 75–90. https://doi.org/10.1016/j.ympev.2016.05.004

Dellicour S. & Flot J.-F. 2015. Delimiting species-poor data sets using single molecular markers: a study of barcode gaps, haplowebs and GMYC. Systematic Biology 64: 900–908. https://doi.org/10.1093/sysbio/syu130

Dellicour S. & Flot J.-F. 2018. The hitchhiker’s guide to single-locus species delimitation. Molecular Ecology Resources 18: 1234–1246. https://doi.org/10.1111/1755-0998.12908

Di Sabatino A., Smit H., Gerecke R., Goldschmidt T., Matsumoto N. & Cicolani B. 2008. Global diversity of water mites (Acari, Hydrachnidia; Arachnida) in freshwater. Hydrobiologia 595: 303–315. https://doi.org/10.1007/s10750-007-9025-1

Duarte M.E., de Mendonça R.S., Skoracka A., Silva E.S. & Navia D. 2019. Integrative taxonomy of Abacarus mites (Eriophyidae) associated with hybrid sugarcane plants, including description of a new species. Experimental and Applied Acarology 78: 373–401. https://doi.org/10.1007/s10493-019-00388-y

Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32 (5): 1792–1797. https://doi.org/10.1093/nar/gkh340

Edler D., Klein J., Antonelli A. & Silvestro D. 2021. raxmlGUI 2.0: a graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution 12: 373–377. https://doi.org/10.1111/2041-210X.13512

Esselstyn J.A., Evans B.J., Sedlock J.L., Anwarali Khan F.A. & Heaney L.R. 2012. Single-locus species delimitation: a test of the mixed Yule–coalescent model, with an empirical application to Philippine round-leaf bats. Proceedings of the Royal Society B: Biological Sciences 279: 3678–3686. https://doi.org/10.1098/rspb.2012.0705

Ezard T., Fujisawa T. & Barraclough T.G. 2009. Splits: species’ limits by threshold statistics, 1.0-20. R package version. Available from http://R-Forge.R-project.org/projects/splits/ [accessed 19 Jul. 2022].

Ferrer-Suay M., Staverløkk A., Selfa J., Pujade-Villar J., Naik S. & Ekrem T. 2018. Nuclear and mitochondrial markers suggest new species boundaries in Alloxysta (Hymenoptera: Cynipoidea: Figitidae). Arthropod Systematics & Phylogeny 76: 463–473.

Flouri T., Jiao X., Rannala B. & Yang Z. 2018. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Molecular Biology and Evolution 35: 2585–2593. https://doi.org/10.1093/molbev/msy147

Gerecke R. 2003. Water mites of the genus Atractides Koch, 1837 (Acari: Parasitengona: Hygrobatidae) in the western Palaearctic region: a revision. Zoological Journal of the Linnean Society 138: 141–378. https://doi.org/10.1046/j.1096-3642.06-0.00051.x

Gerecke R. 2009. Revisional studies on the European species of the water mite genus Lebertia Neuman, 1880 (Acari: Hydrachnidia: Lebertiidae). Abhandlungen der Senckenberg Gesellschaft für Naturforschung 566: 1–144.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W. & Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59: 307–321. https://doi.org/10.1093/sysbio/syq010

Hall B.G. 2013. Building phylogenetic trees from molecular data with MEGA. Molecular Biology and Evolution 30: 1229–1235. https://doi.org/10.1093/molbev/mst012

Hebert P.D.N., Ratnasingham S. & deWaard J.R. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences 270 (Suppl. 1): S96–S99. https://doi.org/10.1098/rsbl.2003.0025

Hebert P.D.N., Ratnasingham S., Zakharov E.V., Telfer A.C., Levesque-Beaudin V., Milton M.A., Pedersen S., Jannetta P. & deWaard J.R. 2016. Counting animal species with DNA barcodes: Canadian insects. Philosophical Transactions of the Royal Society B: Biological Sciences 371 (1702): e20150333. https://doi.org/10.1098/rstb.2015.0333

Jacobs S.J., Kristofferson C., Uribe-Convers S., Latvis M. & Tank D.C. 2018. Incongruence in molecular species delimitation schemes: what to do when adding more data is difficult. Molecular Ecology 27: 2397–2413. https://doi.org/10.1111/mec.14590

Jiang W., Zhu J., Wu Y., Li L., Li Y., Ge C., Wang Y., Endersby N.M., Hoffmann A.A. & Yu W. 2018. Influence of Wolbachia infection on mitochondrial DNA variation in the genus Polytremis (Lepidoptera: Hesperiidae). Molecular Phylogenetics and Evolution 129: 158–170. https://doi.org/10.1016/j.ympev.2018.08.001

Johnson J.S., Spakowicz D.J., Hong B.-Y., Petersen L.M., Demkowicz P., Chen L., Leopold S.R., Hanson B.M., Agresta H.O., Gerstein M., Sodergren E. & Weinstock G.M. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications 10: e5029. https://doi.org/10.1038/s41467-019-13036-1

Kozlov A.M., Darriba D., Flouri T., Morel B. & Stamatakis A. 2019. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35: 4453–4455. https://doi.org/10.1093/bioinformatics/btz305

Kumar S., Stecher G., Li M., Knyaz C. & Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547–1549. https://doi.org/10.1093/molbev/msy096

Lanfear R., Calcott B., Ho S.Y.W. & Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29: 1695– 1701. https://doi.org/10.1093/molbev/mss020

Lanfear R., Frandsen P.B., Wright A.M., Senfeld T. & Calcott B. 2017. PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34: 772–773. https://doi.org/10.1093/molbev/msw260

Leigh J.W. & Bryant D. 2015. popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410

Lin X.-L., Stur E. & Ekrem T. 2018. DNA barcodes and morphology reveal unrecognized species in Chironomidae (Diptera). Insect Systematics & Evolution 49: 329–398. https://doi.org/10.1163/1876312X-00002172

Lundblad O. 1926. Neue Hydracarinen aus Schweden. V–VI. Vorläufige Mitteilung. Entomologisk Tidskrift 47: 205–208.

Lundblad O. 1938. Sig Thor. Entomologisk Tidskrift 59: 107–111.

Lundblad O. 1956. Zur Kenntnis süd- und mitteleuropäischer Hydrachnellen. Arkiv för Zoologi 10: 1–306.

Lundblad O. 1968. Die Hydracarinen Schwedens. III. Arkiv för Zoologi 21: 1–633.

Luo A., Ling C., Ho S.Y.W. & Zhu C.-D. 2018. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67: 830–846. https://doi.org/10.1093/sysbio/syy011

McKay B.D., Mays H.L. Jr, Wu Y., LiH., Yao C.-T., Nishiumi I. & Zou F. 2013. An empirical comparison of character-based and coalescent-based approaches to species delimitation in a young avian complex. Molecular Ecology 22: 4943–4957. https://doi.org/10.1111/mec.12446

Montes-Ortiz L. & Elías-Gutiérrez M. 2020. Water mite diversity (Acariformes: Prostigmata: Parasitengonina: Hydrachnidiae) from karst ecosystems in southern of Mexico: a barcoding approach. Diversity 12 (9): e329. https://doi.org/10.3390/d12090329

Neuman C.J. 1880. Om Sveriges Hydrachnider. Kungliga Svenska Vetenskaps-Akademiens Handlingar, Stockholm (New Series) 17: 1–123.

Pentinsaari M., Vos R. & Mutanen M. 2017. Algorithmic single-locus species delimitation: effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources 17: 393–404. https://doi.org/10.1111/1755-0998.12557

Pešić V. & Smit H. 2016. Evidence of cryptic and pseudocryptic speciation in Brachypodopsis baumi species complex (Acari, Hydrachnidia, Aturidae) from Borneo, with description of three new species. Systematic and Applied Acarology 21: 1092–1106. https://doi.org/10.11158/saa.21.8.10

Pešić V., Asadi M., Cimpean M., Dabert M., Esen Y., Gerecke R., Martin P., Savic A., Smit H. & Stur E. 2017. Six species in one: evidence of cryptic speciation in the Hygrobates fluviatilis complex (Acariformes, Hydrachnidia, Hygrobatidae). Systematic and Applied Acarology 22: 1327–1377. https://doi.org/10.11158/saa.22.9.4

Pons J., Barraclough T.G., Gomez-Zurita J., Cardoso A., Duran D.P., Hazell S., Kamoun S., Sumlin W.D. & Vogler A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55 (4): 595–609. https://doi.org/10.1080/10635150600852011

Popp E. 1991. Beobachtungen und Versuche zur Atmung von Arrenurus (Megaluracarus) globator (Müll.). 1. Morphologie (Acari, Hydrachnidia, Arrenuroidea). Spixiana 14: 249–257.

Puillandre N., Lambert A., Brouillet S. & Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x

Puillandre N., Brouillet S. & Achaz G. 2021. ASAP: Assemble Species by Automatic Partitioning. Molecular Ecology Resources 21: 609–620. https://doi.org/10.1111/1755-0998.13281

Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J. & Glöckner F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research 41 (D1): D590–D596. https://doi.org/10.1093/nar/gks1219

Ratnasingham S. & Hebert P.D.N. 2007. BOLD: the Barcode of Life Data System (boldsystems.org). Molecular Ecology Notes 7: 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x

R-Core-Team 2020. R: a language and environment for statistical computing. Available from https://www.Rproject.org/ [accessed 19 Jul. 2022].

Sazama E.J., Bosch M.J., Shouldis C.S., Ouellette S.P. & Wesner J.S. 2017. Incidence of Wolbachia in aquatic insects. Ecology and Evolution 7: 1165–1169. https://doi.org/10.1002/ece3.2742

Sela I., Ashkenazy H., Katoh K. & Pupko T. 2015. GUIDANCE2: accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Research 43: W7–W14. https://doi.org/10.1093/nar/gkv318

Smith I.M. & Cook D.R. 1991. Water Mites. In: Thorp J. & Covich A. (eds) Ecology and Classification of North American Freshwater Invertebrates: 523–592. Academic Press, San Diego.

Stryjecki R., Czepiel-Mil K., Gryzinska M. & Zawal A. 2015. A very rare case of intersexuality in water mites of the genus Arrenurus Dugès, 1834 (Acari, Hydrachnidia). Invertebrate Reproduction & Development 59: 155–165. https://doi.org/10.1080/07924259.2015.1050560

Sucháčková Bartoňová A., Konvička M., Marešová J., Wiemers M., Ignatev N., Wahlberg N., Schmitt T. & Faltýnek Fric Z. 2021. Wolbachia affects mitochondrial population structure in two systems of closely related Palaearctic blue butterflies. Scientific Reports 11: e3019. https://doi.org/10.1038/s41598-021-82433-8

Talavera G., Dincă V. & Vila R. 2013. Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution 4: 1101–1110. https://doi.org/10.1111/2041-210X.12107

Thor S. 1900. Hydrachnologische Notizen I–III. Nyt Magazin for Naturvidenskaberne 38: 267–279. Available from https://www.biodiversitylibrary.org/page/35231603 [accessed 18 Jul. 2022].

Thor S. 1902. Untersuchungen über die Haut verschiedener dickhäutiger Acarina. Arbeiten aus dem zoologischen Instituten der Universität Wien und der zoologischen Station in Triest 14: 291–306.

Thor S. 1906. Lebertia-Studien VI–VIII. Zoologischer Anzeiger 29: 761–790. Available from https://www.biodiversitylibrary.org/page/10360125 [accessed 18 Jul. 2022].

Thor S. 1926. Die Acarina der Kamtschatka-Expedition 1908–1909. Annuaire du Musée zoologique de l’Academie Impériale des Sciences d’U.R.S.S., Leningrad 27: 131–174.

Viets K. 1936. Wassermilben oder Hydracarina (Hydrachnellae und Halacaridae). In: Dahl F. (ed.) Tierwelt Deutschlands: 1–288, 289–574. G. Fischer, Jena, Germany.

Viets K. 1939. Sig Thor. Ein Nachruf. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen 9: 356–357. https://doi.org/10.1080/03680770.1940.11898683

Viets K. 1956. Die Milben des Süßwassers und des Meeres: Hydrachnellae et Halacaridae (Acari). II. und III. Teil: Katalog und Nomenklator. G. Fischer, Jena, Germany.

Werren J.H. & Windsor D.M. 2000. Wolbachia infection frequencies in insects: evidence of a global equilibrium? Proceedings of the Royal Society B: Biological Sciences 267 (1450): 1277–1285. https://doi.org/10.1098/rspb.2000.1139

Werren J.H., Zhang W. & Guo L.R. 1995. Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society B: Biological Sciences 261 (1360): 55–63. https://doi.org/10.1098/rspb.1995.0117

Werren J.H., Baldo L. & Clark M.E. 2008. Wolbachia: master manipulators of invertebrate biology. Nature Reviews, Microbiology 6: 741–751. https://doi.org/10.1038/nrmicro1969

Whitworth T.L., Dawson R.D., Magalon H. & Baudry E. 2007. DNA barcoding cannot reliably identify species of the blowfly genus Protocalliphora (Diptera: Calliphoridae). Proceedings of the Royal Society B: Biological Sciences 274: 1731–1739. https://doi.org/10.1098/rspb.2007.0062

Xinyao G., Yuling Z., Haitao L. & Jianjun G. 2022. A case of integrative taxonomy based on traditional morphology, molecular systematics and geometric morphometrics in the taxonomy of Torrenticolidae (Acari, Hydrachnidiae). Systematic and Applied Acarology 27: 905–921. https://doi.org/10.11158/saa.27.5.6

Yang Z. 2015. The BPP program for species tree estimation and species delimitation. Current Zoology 61: 854–865. https://doi.org/10.1093/czoolo/61.5.854

Yang Z. & Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proceedings of the National Academy of Sciences 107 (20): 9264–9269. https://doi.org/10.1073/pnas.0913022107

Zhang C., Zhang D.-X., Zhu T. & Yang Z. 2011. Evaluation of a Bayesian coalescent method of species delimitation. Systematic Biology 60: 747–761. https://doi.org/10.1093/sysbio/syr071

Zhang J., Kapli P., Pavlidis P. & Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876.

https://doi.org/10.1093/bioinformatics/btt499

Published
2022-09-09
How to Cite
Tyukosova, V., Gerecke, R., Stur, E., & Ekrem, T. (2022). Disentangling the identity of Lebertia porosa Thor, 1900 using integrative taxonomy (Acari: Hydrachnidia). European Journal of Taxonomy, 836(1), 131-169. https://doi.org/10.5852/ejt.2022.836.1921
Section
Research article