Phylogenetic analyses and description of a new species of black widow spider of the genus Latrodectus Walckenaer (Araneae, Theridiidae) from Mexico; one or more species?
Abstract
A new species of the spider genus Latrodectus Walckenaer, 1805 from Mexico is described based on an integrative taxonomic approach. Latrodectus occidentalis Valdez-Mondragón sp. nov. is described using the molecular markers cytochrome c oxidase subunit 1 (CO1) and internal transcribed spacer 2 (ITS2), morphology of male and female specimens, and Species Distribution Models (SDM). Four molecular methods for species delimitation were implemented. The new species is characterized by having a unique dorsal coloration pattern on the abdomen. Latrodectus occidentalis sp. nov. is considered a distinct and valid species for four reasons: (1) it can be distinguished by morphological characters (genital and somatic); (2) the average interspecific genetic variation is > 2%; (3) 12 haplotypes were recovered within the species, being separated by the next close haplogroup of L. hesperus Chamberlin & Ivie, 1935 (30 mutations); and (4) congruence was observed among the four molecular methods. The number of recorded species of Latrodectus from Mexico increases to four: Latrodectus mactans (Fabricius, 1775), L. hesperus Chamberlin & Ivie, 1935, L. geometricus C.L. Koch, 1841 (introduced), and L. occidentalis sp. nov. The diversity of the genus Latrodectus from Mexico is surely underestimated, and more sampling is needed from the different biogeographical provinces and ecoregions to fill in these gaps.
References
Aguilera M.A., D’Elía G. & Casanueva M. E. 2009. Revalidation of Latrodectus thoracicus Nicolet, 1849 (Araneae: Theridiidae): biological and phylogenetic antecedents. Guyana 73 (2): 161–171.
Barrett R.D. & Hebert P.D. 2005. Identifying spiders through DNA barcodes. Canadian Journal of Zoology 83: 481–491. https://doi.org/10.1139/z05-024
Barreto P. & Barreto M. 1994. Arañas. Importancia médica y llave para familias. Colombia Médica 25: 3–12.
Cobos M.E., Peterson A.T., Osorio-Olvera L. & Jiménez-García D. 2019. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecological Informatics 53:100983. https://doi.org/10.1016/j.ecoinf.2019.100983
Cabrera-Espinosa L.A. 2020. Arañas de Importancia Médica: Registros Actualizados de las Especies de Arañas “Viudas Negras” del Género Latrodectus Walckenaer, 1805 (Araneae: Theridiidae) de México. Bachelor thesis, Benemérita Universidad Autónoma de Puebla, México.
Cabrera-Espinosa L.A. & Valdez-Mondragón A. 2019. El género de arañas “viudas negras” Latrodectus (Araneae: Theridiidae) en México, ¿qué se conoce ahora sobre su distribución? Boletín de la AMXSA 3 (2): 15–21.
Cabrera-Espinosa L.A. & Valdez-Mondragón A. 2021. Distribución y modelaje de nicho ecológico, comentarios biogeográficos y taxonómicos del género de arañas Latrodectus Walckenaer (Araneae, Theridiidae) de México. Revista Mexicana de Biodiversidad 92: e923665. https://doi.org/10.22201/ib.20078706e.2021.92.3665
Carstens B.C., Pelletier T.A., Reid N.M. & Satler J.D. 2013. How to fail at species delimitation. Molecular Ecology 22: 4369–4383. https://doi.org/10.1111/mec.12413
Castañeda-Gómez J., Pinkus-Rendón M., Arisqueta-Chablé C., Barrera-Pérez M., Ortiz-Martínez D. & Manrique-Saide P. 2012. Nuevos registros del género Latrodectus en Yucatán, México. Revista Biomédica 23: 105–111.
Chamberlin R.V. & Ivie W. 1935. The black widow spider and its varieties in the United States. Bulletin of the University of Utah 25 (8): 1–29.
Choi M.B., Lee S.Y., Yoo J.S., Jun J. & Kwon O. 2019. First record of the western black widow spider Latrodectus hesperus Chamberlin & Ivie, 1935 (Araneae: Theridiidae) in South Korea. Entomological Research 49 (3): 141–146. https://doi.org/10.1111/1748-5967.12350
Clement M., Snell Q., Walker P., Posada D. & Crandall K. 2002. TCS: estimating gene genealogies. Proceedings 16th International Parallel and Distributed Processing Symposium, Ft. Lauderdale, FL, USA. https://doi.org/10.1109/IPDPS.2002.1016585
Cobos E.M., Townsend P. & Osorio-Olvera L. 2019a. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7: e6281. https://doi.org/10.7717/peerj.6281
Cobos E.M., Townsend P., Osorio-Olvera L. & Jiménez-García L. 2019b. An exhaustive analysis of heuristic methods for variable selection in ecological niche modeling and species distribution modeling. Ecological Informatics 53: e100983. https://doi.org/10.1016/j.ecoinf.2019.100983
Cortez-Roldán M. 2018. Arañas de Importancia Médica: Distribución y Modelaje de Nicho Ecológico de las Especies de Arañas Violinista del Género Loxosceles Heineken y Love, 1832 (Araneae, Sicariidae) de México. Bachelor thesis, Universidad Autónoma de Tlaxcala, México.
Cortez-Roldán. M. 2022. Distribución Potencial y Escenarios de Cambio Climático en Cuatro Especies del Género Loxosceles (Araneae: Sicariidae) del Centro–Occidente de México. Master tesis, Universidad Autónoma de Tlaxcala, México.
Cuervo-Robayo A.P., Téllez-Valdés O., Gómez-Albores M.A., Venegas-Barrera C.S., Manjarrez J. & Martínez-Meyer E. 2013. An update of high-resolution monthly climate surfaces for Mexico. International Journal of Climatology 34 (7): 2427–2437. https://doi.org/10.1002/joc.3848
Desales-Lara M.A., Jiménez M.L. & Corcuera P. 2018. Nuevos registros de arañas (Arachnida: Araneae) para México y listado actualizado de la araneofauna del estado de Coahuila. Acta Zoológica Mexicana 34 (1): 50–63. https://doi.org/10.21829/azm.2018.3411183
DeSalle R., Egan M.G. & Siddall M. 2005. The unholy trinity: taxonomy, species delimitation and DNA Barcoding. Philosophical Transactions of the Royal Society B 360: 1905–1916. https://doi.org/10.1098/rstb.2005.1722
Drummond A.J., Suchard M.A., Xie D. & Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29 (8): 1969–1973. https://doi.org/10.1093/molbev/mss075
Escobar L.E., Medina-Vogel G. & Peterson A.T. 2014. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: use of Maxent and NicheA to assure strict model transference. Geospatial Health 9 (1): 221–229. https://doi.org/10.4081/gh.2014.19
Fick S.E. & Hijmans R.J. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37 (12): 4302–4315. https://doi.org/10.1002/joc.5086
Folmer O., Black M., Hoeh W., Lutz R. & Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology 3: 294–299.
Fujisawa T. & Barraclough T.G. 2013. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology 62 (5): 707–724. https://doi.org/10.1093/sysbio/syt033
Garb J.E., Gonzáles A. & Gillespie R.G. 2004. The black widow spider Latrodectus (Araneae; Theridiidae): phylogeny, biogeography, and invasion history. Molecular Phylogenetics and Evolution 31: 1127–1142. https://doi.org/10.1016/j.ympev.2003.10.012
González T.L. 1954. Latrodectus mactans mexicanus subsp. nov. Anales del Instituto Biológico de la Universidad Nacional Autónoma de México 24: 455–457.
Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acid Symposium Series 41: 95–98.
Hazzi N.A. & Hormiga G. 2021. Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (FO Pickard-Cambridge, 1897) (Araneae, Ctenidae). ZooKeys 1022: 13–50. https://doi.org/10.3897/zookeys.1022.60571
Holz G.G. & Habener J.F. 1998. Black widow spider alpha-latrotoxin: a presynaptic neurotoxin that shares structural homology with the glucagon-like peptide-1 family of insulin secretagogic hormones. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular biology 121 (2): 177–184. https://doi.org/10.1016/S0305-0491(98)10088-3
Huber B.A. & Dimitrov D. 2014. Slow genital and genetic but rapid non-genital and ecological differentiation in a pair of spider species (Araneae, Pholcidae). Zoologischer Anzeiger 253 (5): 394–403. https://doi.org/10.1016/j.jcz.2014.04.001
Huber B.A., Rheims C.A. & Brescovit A.D. 2005. Speciation without changes in genital shape: a case study on Brazilian pholcid spiders (Araneae: Pholcidae). Zoologischer Anzeiger 243 (4): 273–279. https://doi.org/10.1016/j.jcz.2004.12.001
Ji Y.J., Zhang D.X. & He L.J. 2003. Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3: 581–585. https://doi.org/10.1046/j.1471-8286.2003.00519.x
Jiménez M.L., Nieto-Castañeda I.G., Correa-Ramírez M.M. & Palacios-Cardiel C. 2015. Las arañas de los oasis de la región meridional de la península de Baja California, México. Revista Mexicana de Biodiversidad 86: 319–331. https://doi.org/10.1016/j.rmb.2015.04.028
Kapli P., Lutteropp S., Zhang J., Pavlidis P., Stamatakis A. & Flouri T. 2017. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33 (11): 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
Kaslin J.R. 2013. Distribución Actual y Potencial de las Poblaciones del Género Latrodectus (Araneae: Theridiidae) en Ecuador. Bachelor thesis, Pontifica Universidad Católica del Ecuador, Ecuador.
Kass J.M., Pinilla-Buitrago G.E., Vilela B., Aeillo-Lammens M.E., Muscarella R., Merow C. & Anderson R.P. 2022. Wallace: A modular platform for reproducible ecological modeling. Version 1.1.3. Available from http://wallaceecomod.github.io/wallace/ [accessed 5 Sep. 2023].
Kaston B.J. 1970. Comparative biology of American black widow spiders. Transactions of the San Diego Society of Natural History 16: 33–82.
Katoh K. & Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 4: 286–298. https://doi.org/10.1186/1471-2105-9-212
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Meintjes P. & Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28: 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kumar S., Tamura K. & Nei M. 1994. MEGA: Molecular Evolution Genetics Analysis software for microcomputers. Computer Applications in the Biosciences 10: 189–191. https://doi.org/10.1093/bioinformatics/10.2.189
Leigh J.W. & Bryant D. 2015. POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution 6: 1110–1116. https://doi.org/10.1111/2041-210X.12410
Letunic I. & Bork P. 2021. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research 49 (W1): W293–W296. https://doi.org/10.1093/nar/gkab301
Levi H.W. 1958. Number of species of black-widow spiders (Theridiidae: Latrodectus). Science 127: 1055. https://doi.org/10.1126/science.127.3305.1055.a
Levi H.W. 1959. The spider genus Latrodectus (Araneae, Theridiidae). Transactions of the American Microscopical Society 78: 7–43. https://doi.org/10.2307/3223799
Levi H.W. 1966. The three species of Latrodectus (Araneae), found in Israel. Journal of Zoology 150: 427–432. https://doi.org/10.1111/j.1469-7998.1966.tb03016.x
Levi H.W. & Randolph D.E. 1975. A key and checklist of American spiders of the family Theridiidae north of Mexico (Araneae). Journal of Arachnology 3: 31–51. Available from http://www.jstor.org/stable/3705253 [accessed 5 Sep. 2023].
Levy G. & Amitai P. 1983. Revision of the widow-spider genus Latrodectus (Araneae: Theridiidae) in Israel. Zoological Journal of the Linnean Society 71: 39–63. https://doi.org/10.1111/j.1096-3642.1983.tb01720.x
Lotz L.N. 1994. Revision of the genus Latrodectus (Araneae: Theridiidae) in Africa. Navorsinge van die Nasionale Museum Bloemfontein 10: 1–60. https://hdl.handle.net/10520/AJA00679208_1357
Luo A., Ling C., Ho Y.M. & Zhu C.D. 2018. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology 67 (5): 830–846. https://doi.org/10.1093/sysbio/syy011
Marques R., Krüger R.F., Peterson A.T., de Melo L.F., Vicenzi N. & Jiménez-García D. 2020. Climate change implications for the distribution of the babesiosis and anaplasmosis tick vector, Rhipicephalus (Boophilus) microplus. Veterinary Research 51 (1): 1–10. https://doi.org/10.1186/s13567-020-00802-z
Melic A. 2000. El género Latrodectus Walckenaer, 1805 en la península Ibérica (Araneae: Theridiidae). Revista Ibérica de Aracnología 1 (12): 13–30.
Monaghan M.T., Wild R., Elliot M., Fujisawa T., Balke M., Inward D.J. & Vogler A.P. 2009. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology 58 (3): 298–311. https://doi.org/10.1093/sysbio/syp027
Morrone J. 2004. Panbiogeografía, componentes bióticos y zonas de transición. Revista Brasileira de Entomologia 48 (2): 149–162. https://doi.org/10.1590/S0085-56262004000200001
Morrone J. 2005. Hacia una síntesis biogeográfica de México. Revista Mexicana de Biodiversidad 76 (2): 207–252. https://doi.org/10.22201/ib.20078706e.2005.002.303
Morrone J. 2017. Mexican biogeographic provinces: map and shapefiles. Zootaxa 4277 (2): 277–279. https://doi.org/10.11646/zootaxa.4277.2.8
Navarro-Rodríguez C.I. 2019. Delimitación de las Especies Mexicanas de Arañas del Género Loxosceles Heineken y Love (Araneae, Sicariidae) del Centro Occidente de México con Evidencia Molecular y Morfológica. Masters thesis, Universidad Autónoma de Tlaxcala, México.
Navarro-Rodríguez C.I. & Valdez-Mondragón A. 2020. Description of a new species of Loxosceles Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: morphological and DNA barcoding data (CO1 + ITS2). European Journal of Taxonomy 704: 1–30. https://doi.org/10.5852/ejt.2020.704
Nolasco S. & Valdez-Mondragón A. 2022. To be or not to be… Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus Physocyclus (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys 1135: 93–118. https://doi.org/10.3897/zookeys.1135.94628
Olson D.M., Dinerstein E., Wikramanayake E.D., Burgess N.D., Powell G.V.N., Underwood E.C., D’Amico J.A., Itoua I., Strand H.E., Morrison J.C., Loucks C.J., Allnutt T.F., Ricketts T.H., Kura Y., Lamoreux J.F., Wettengel W.W., Hedao P. & Kassem K.R. 2001. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51 (11): 933–938. https://doi.org/c635xt
Ortiz D. & Francke O.F. 2016. Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Molecular Phylogenetics and Evolution 101: 176–193. https://doi.org/10.1016/j.ympev.2016.05.003
Padial J.M., Miralles A., de la Riva I. & Vences M. 2010. The integrative future of taxonomy. Frontiers in Zoology 7: 1–16. https://doi.org/10.1186/1742-9994-7-16
Pérez-Delgado A.J., Arribas P., Hernando C., López H., Arjona Y., Suárez-Ramos D., Emerson B.C. & Andújar C. 2021. Hidden island endemic species and their implications for cryptic speciation within soil arthropods. Journal of Biogeography 49: 1367–1380. https://doi.org/10.1111/jbi.14388
Phillips S.J., Anderson R.P. & Schapire R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 (3–4): 231–259. https://doi.org/10.1145/1015330.1015412
Pickard-Cambridge F. 1902. On the spiders of the genus Latrodectus, Walckenaer. Proceedings of the Zoological Society of London 72 (1): 247–261. Available from https://www.biodiversitylibrary.org/page/31575819 [accessed 5 Sep. 2023].
Planas E. & Ribera C. 2015. Description of six new species of Loxosceles (Araneae: Sicariidae) endemic to the Canary Islands and the utility of DNA barcoding for their fast and accurate identification. Zoological Journal of the Linnean Society 174 (1): 47–73. https://doi.org/10.1111/zoj.12226
Pons J., Barraclough T., Gomez-Zurita J., Cardoso A., Duran D., Hazell S., Kamoun S., Sumlim W.D. & Vogler A.P. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55: 595–609. https://doi.org/10.1080/10635150600852011
Puillandre N., Lambert A., Brouillet S. & Achaz G. 2012. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology 21: 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
Puillandre N., Brouillet S. & Achaz G. 2021. ASAP: assemble species by automatic partitioning. Molecular Ecology Resources 21: 609–620. https://doi.org/10.1111/1755-0998.13281
Rambaut A., Drummond A.J., Xie D., Baele G. & Suchard M.A. 2018. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67 (5): 901–904. https://doi.org/10.1093/sysbio/syy032
Rannala B. & Yang Z. 2020. Species delimitation. In: Scornavacca C., Delsuc F. & Galtier N. (eds) Phylogenetics in the Genomic Era 5.5:1–5.5:18. Available from https://hal.archives-ouvertes.fr/hal-02536468 [accessed 5 Sep. 2023].
Rueda A., Lozano D., Muñoz-Charry V., Velásquez-Vélez M.I., Amézquita A., Parra D. & Realpe E. 2021. Phylogeny of the genus Latrodectus (Araneae: Theridiidae) and two new species from the dry forests in the Magdalena Valley-Colombia. Species 22 (70): 243–265.
Salceda-Sánchez B., Hernández-Hernández V., Conde-Sánchez E., Vargas-Olmos M., López-Cárdenas J. & Huerta H. 2017. Nuevos registros de distribución del género Latrodectus Walckenaer y Loxosceles Heineken y Lowe en México. Southwestern Entomologist 42 (2): 575–582. https://doi.org/10.3958/059.042.0226
Taucare-Ríos A., Bizama G. & Bustamante R.O. 2016. Using global and regional Species Distribution Models (SDM) to infer the invasive stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas. Environmental Entomology 45 (6): 1379–1385. https://doi.org/10.1093/ee/nvw118
Ubick D.P., Cushing P. & Roth V. (eds) 2005. Spiders of North America: An Identification Manual. American Arachnological Society.
Valdez-Mondragón A. 2020. COI mtDNA barcoding an morphology for species delimitation in the spider genus Ixchela Huber (Araneae: Pholcidae), with the description of two new species from Mexico. Zootaxa 4747 (1): 54–76. https://doi.org/10.11646/zootaxa.4747.1.2
Valdez-Mondragón A. & Francke O.F. 2015. Phylogeny of the spider genus Ixchela Huber, 2000 (Araneae: Pholcidae) based on morphological and molecular evidence (CO1 and 16S), with a hypothesized diversification in the Pleistocene. Zoological Journal of the Linnean Society 175 (1): 20–58. https://doi.org/10.1111/zoj.12265
Valdez-Mondragón A., Cortez-Roldán M.R., Juárez-Sánchez A.R. & Solís-Catalán K.P. 2018. A new species of Loxosceles Heineken & Lowe (Araneae, Sicariidae), with updated distribution records and biogeographical comments for the species from Mexico, including a new record of Loxosceles rufescens (Dufour). ZooKeys 802: 39–66. https://doi.org/10.3897/zookeys.802.28445
Valdez-Mondragón A., Navarro-Rodríguez C.I., Solís-Catalán K.P., Cortez-Roldán M.R. & Juárez-Sánchez A.R. 2019. Under an integrative taxonomic approach: the description of a new species of the genus Loxosceles (Araneae, Sicariidae) from Mexico City. ZooKeys 892: 93–133. https://doi.org/10.3897/zookeys.892.39558
Vink C.J., Derraik J.G., Phillips C.B. & Sirvid P.J. 2011. The invasive Australian redback spider, Latrodectus hasseltii Thorell 1870 (Araneae: Theridiidae): current and potential distributions, and likely impacts. Biological Invasions 13 (4): 1003–1019. https://doi.org/10.1007/s10530-010-9885-6
Waldock J.M. 2013. A review of the peacock spiders of the Maratus mungaich species-group (Araneae: Salticidae), with descriptions of four new species. Records of the Western Australian Museum 28 (1): 66–81. https://doi.org/10.18195/issn.0312-3162.28(1).2013.066-081
Waldock J.M. 2014. Two new species of peacock spider of the Maratus mungaich species-group (Araneae: Salticidae) from south-western Australia. Records of the Western Australian Museum 29 (2): 149–158. https://doi.org/10.18195/issn.0312-3162.29(2).2014.149-158
World Spider Catalog. 2023. WSC. Version 24. Natural History Museum Bern. Available from http://wsc.nmbe.ch [accessed 13 May 2023]. https://doi.org/10.24436/2
Wright B.M.O.G., Wright C.D., Sole C.L., Lyle R., Tippett R., Sholto-Douglas C., Verburgt L. & Engelbrecht I. 2019. A new forest dwelling button spider from South Africa (Araneae, Theridiidae, Latrodectus). Zootaxa 4700 (4): 584–600. https://doi.org/10.11646/zootaxa.4s700.4.12
Zhang J., Kapli P., Pavlidis P. & Stamatakis A. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29: 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
Copyright (c) 2023 Alejandro Valdez-Mondragón, Luis A. Cabrera-Espinosa
This work is licensed under a Creative Commons Attribution 4.0 International License.
Creative Commons Copyright Notices
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are NOT ALLOWED TO post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to taxonomic issues.